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Abstract

We address the problem of object modelling from 3D and 4D sparse data
acquired as different sequences which are misaligned with respect to each
other. Such data may result from various imaging modalities and can there-
fore present very diverse spatial configurations and appearances. We focus
on medical tomographic data, made up of sets of 2D slices having arbitrary
positions and orientations, and which may have different gains and contrasts
even within the same dataset. The analysis of such tomographic data is
essential for establishing a diagnosis or planning surgery.

Modelling from sparse and misaligned data requires solving the three in-
herently related problems of registration, segmentation, and interpolation.
We propose a new method to integrate these stages in a level set framework.
Registration is particularly challenging by the limited number of intersections
present in a sparse dataset, and interpolation has to handle images that may
have very different appearances. Hence, registration and interpolation ex-
ploit segmentation information, rather than pixel intensities, for increased
robustness and accuracy. We achieve this by first introducing a new level set
scheme based on the interpolation of the level set function by radial basis
functions. This new scheme can inherently handle sparse data, and is more
numerically stable and robust to noise than the classical level set. We also
present a new registration algorithm based on the level set method, which is
robust to local minima and can handle sparse data that have only a limited
number of intersections. Then, we integrate these two methods into the same
level set framework.

The proposed method is validated quantitatively and subjectively on artifi-
cial data and MRI and CT scans. It is compared against a state-of-the-art,
sequential method comprising traditional mutual information based regis-
tration, image interpolation, and 3D or 4D segmentation of the registered
and interpolated volume. In our experiments, the proposed framework yields
similar segmentation results to the sequential approach, but provides a more
robust and accurate registration and interpolation. In particular, the reg-
istration is more robust to limited intersections in the data and to local
minima. The interpolation is more satisfactory in cases of large gaps, due
to the method taking into account the global shape of the object, and it
recovers better topologies at the extremities of the shapes where the objects
disappear from the image slices. As a result, the complete integrated frame-
work provides more satisfactory shape reconstructions than the sequential
approach.
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Chapter

Introduction

Recovering an object’s shape from 3D or 4D measurements requires segmenting the im-
aged volume in order to delineate the object’s boundaries. Its large range of applications
includes, but is not limited to, characterising objects’ shapes and dynamics, visualising,
archiving, and distributing them. A well known example of an archiving and distribution
application is the Digital Michelangelo Project [27], which aimed at preserving Michelan-
gelo’s sculptures by recording digital copies. This project also enabled a large community
of experts worldwide to work based on the models, without the need to obtain physical
access to the sculptures. Similarly, in medical imaging, it may be desirable to archive
the shape and dynamics of organs or tumour in order to monitor their temporal evolu-
tion in the long term. Medical imaging also uses object modelling extensively to help
establish a diagnosis or plan surgery, by taking advantage of the easier visualisation and
characterisation provided by this technique. Thus, the shape and dynamics of an organ
or a tumour, for example, may be visualised in 3D or 4D and from arbitrary view points.
As will be illustrated in Chapter 2 and Appendix C, such visualisation would not be
possible by using the raw image data directly. The shape and dynamics of an organ or
tumour may also be easily characterised after modelling them, e.g. by computing their

volume and how it changes over time.

Due to the great variety of applications and imaging modalities, object shape measure-
ments may have various forms, from 2D slices which span the imaged volume in tomog-

raphy, to 3D point clouds acquired by range sensors. This work focuses on the modelling



of 3D and 4D objects from sparse!

and misaligned medical tomographic data, and aims
to be general enough to handle data from any medical tomographic modality, regardless
of its type and spatial configuration. Sparse and misaligned data are commonly found
in these modalities, and raise a number of issues which make the segmentation of such

data more challenging than with ideally dense and well-aligned measurements.

The first issue of such datasets is that misaligned data provide incoherent information to
the segmentation stage, since they locate the object at different positions. Misalignments
in 3D tomographic medical images may be caused by movements of the imaged object.
They are particularly frequent due to the difficulty for the patient to remain perfectly
still during the full time of the acquisition, which takes typically 30 min for a Magnetic
Resonance Imaging (MRI) scan for example. The images acquired (e.g. Fig. 1.1) must
be registered prior to any other processing. However, a second issue arises when the data
are sparse and do not span the whole imaged volume, since this registration is further
complicated by the limited number of intersection points available to match the different

acquisitions together.

Figure 1.1: Example of misaligned dataset — two orthogonal horizontal and
vertical medical images of the chest acquired separately. The round shape in the
horizontal image, and the elongated shape in the vertical one, are cross sections
of the left ventricle of the heart. Their misalignment is due to the patient’s
movements between the acquisitions.

A third issue of our tomographic datasets is that many acquisition protocols do not
measure the full imaged volume, and the resulting 3D and 4D datasets contain gaps of
various extents, which do not provide the data support needed by segmentation. This
occurs often in medical imaging, especially with MRI scans, where volumes are commonly
made up of thick and widely spaced slices, as illustrated in Fig. 1.2. In particular, medical

imaging protocols often require integrating the signal over a thick slice of the volume

lin the sense that the data are incomplete and the images do not cover the full volume



in order to improve its quality by increasing the signal to noise ratio. This sets an
undesirable limit on the possible slice spacings. Thus, in 4D cardiac MRIs produced by
a 1.5 Tesla scanner, a typical slice thickness is 7 mm, hence slice spacing is often 7 mm or
larger. In addition, clinicians commonly choose to acquire largely spaced slices in order
to decrease the acquisition time and reduce discomfort for patients who are asked to
remain perfectly still until the end of the acquisition, and sometimes to hold their breath
repeatedly for around 10 s and occasionally up to 30 s at a time. Such data acquisition
protocols result in very sparse volumes containing large gaps between the 2D slices, with
widths of around 8 mm to 16 mm for in-plane pixel sizes of ~1.8 mm for cardiac cine
MRIs. Therefore, interpolation, either of the images or of the object’s shape, is needed

in order to recover the closed 3D shape of the object.

Figure 1.2: Examples of sparse datasets — slice thickness is imposed by the
scanner’s limitations, while spacing is adjusted as a compromise between accu-
racy and patient comfort. (a) simple stack of parallel slices, (b) standard spatial
configuration of a cardiac MRI: a stack of parallel short-axis slices plus a few
long-axis ones, and (c) radial dataset.

It is important to note that the three processes required to model objects from sparse
and misaligned data — namely registration, segmentation, and interpolation — are closely
intertwined. Several measurements may drive the segmentation of a volume concur-
rently, but only on the condition that these measurements are aligned with each other,
since otherwise they would provide incoherent information to the segmentation process.
Similarly, sparse volumes do not contain enough information to drive the segmentation
everywhere. As such, segmentation of sparse and misaligned data cannot be performed
without registration and interpolation. Similarly, registration is made difficult by the
sparseness of the data, and shape information yielded by the segmentation would drive
it more efficiently and reliably than raw data values. Likewise, interpolation can also
gain robustness by exploiting shape information and segmentation results. It naturally

follows that these three processes would benefit from being integrated in a single frame-



work. Such integration has been attempted in the past, as will be discussed in Chapter

3, and will be a focus of this work.

Further, this work aims to be general enough to be used on a variety of data, regardless
of their spatial configuration. Depending on the modality, the slices which make up a to-
mographic medical volume may have greatly varying spatial configurations, since a large
variety of imaging protocols exist, producing from simple stacks of parallel and equally
spaced images (Fig. 1.2a), to more complicated spatial configurations (Figs. 1.2b,c). In
addition, the positions and orientations of medical slices must be adapted to the mor-
phology of the patient, and therefore vary in number, location, orientation, and spacing,
between both patients and imaged organs. Theoretically, it is reasonable to exploit all
available information in order to obtain the most robust modelling possible. In practice,
this approach raises multiple issues, especially when interpolating between sets of slices
having different orientations (Figs. 1.2b,c for example), as will be discussed in more de-
tail in Chapter 3. As a result, exploiting all available information is a difficult task, and
several existing methods fail to achieve this, as in the case of cardiac cine MRI, where
slices of unsupported orientations and the valuable information they contain are often
discarded, e.g. in [13, 14]. The method proposed in this work is able to process slices
having arbitrary positions and orientations, and is therefore general enough to process

data of any spatial configuration.

Another problem addressed by this work is the different gains and contrasts which can
occasionally be found in the same dataset. In particular, cine MRI acquisition protocols
tend to produce images having different gains and contrasts, especially between different
image orientations. A common example is cardiac MRI, as illustrated at the top row
of Fig. 1.3. Images from different modalities may also be found in the same dataset,
as shown in the bottom row of Fig. 1.3. The different appearances of such images
makes their simultaneous processing even more challenging, especially when trying to

interpolate pixel intensities in the gaps in the data.

In summary, the challenges addressed by this work are:

1. the misalignments in the data, which provide conflicting information to the seg-

mentation and interpolation stages,
2. the difficult registration due to the sparsity of the data,

3. the gaps in the datasets, which make interpolation necessary in order to recover a

closed shape of the object,



1.1 Overview of the Proposed Method )

(a) (b)

(c)

Figure 1.3: Images having different gains and contrasts within the same dataset.
Top row: short- and long-axis slices of a cardiac MRI dataset. (a) long-axis (left)
and short-axis (right) views. The red arrows point to corresponding areas in the
two images with different respective intensities. (b) long-axis view with inter-
secting short-axis slices superimposed, which have different gains and contrasts.
Bottom row: pelvis MRIs acquired at the same location with different scanner
parameters: (c) STIR, and (d) T1 protocols.

4. the different gains and contrasts in the images of the same dataset,
5. the great variety of possible spatial configurations, and

6. the inter-dependency of the three processes of registration, segmentation, and in-

terpolation.

1.1 Overview of the Proposed Method

This work addresses the challenges listed previously by adopting a new strategy, which
integrates the three stages of registration, segmentation, and interpolation into a single

framework based on a level set method. Level set methods are known to be flexible
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since they can segment arbitrary shapes and topologies, without the need for a training
phase, and they can use any segmentation criteria. This flexibility allows us to model a
great variety of shapes from data from various modalities and that have different spatial

configurations.

In Chapter 4, we first propose a new integrated segmentation and interpolation level set
framework which inherently handles sparse data of arbitrary spatial configurations and
appearances. This new framework is general purpose, and it performs interpolation at
the same time as segmentation, thanks to it’s level set formulation. More specifically,
it interpolates the shape of the object in the gaps in the data through the level set in-
terface, while this interface also segments both the data and the volume. The evolution
of this level set is driven by all available data points, with no consideration of their
location. It can also make use of any type of data, and of multiple types of data simulta-
neously, through the choice of an appropriate segmentation algorithm. The interpolation

properties of this framework are evaluated on a variety of medical datasets.

Then in Chapter 5, we add registration to our integrated level set framework. We first
present a level set based registration method, which is suited for aligning non-overlapping
sparse data that may suffer from a limited number of intersections. We then extend this
new registration method to a global formulation in order to increase its robustness to
local minima. We also evaluate the registration and the complete reconstruction of our

fully integrated framework on multiple data from different modalities.

Finally, in Chapter 6, we propose an application of our general purpose integrated frame-
work to 4D modelling of the heart from cardiac cine MRIs. We exploit the cyclical nature
of the cardiac motion to improve consistency of the modelling. Simple segmentation crite-
ria based on intensity are used to segment both cavities of the heart, and we demonstrate
the use of prior knowledge in our framework to constrain the more difficult segmentation
of the myocardium. To the best of our knowledge, this is the first time that the heart
is modelled using a fully integrated level set framework. This has the advantages of
producing robust registration and interpolation, as well as very detailed shapes. This
also allows the segmentation and modelling to be improved when novel segmentation

algorithms are developed, since they can be easily integrated in the framework.
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1.2 Contributions

The original contributions of this work are the following:

1. We introduce and implement the concept of interpolating a level set segmenting

surface rather than the data directly.

2. We introduce a new level set scheme, based on the interpolation of its implicit
function by Radial Basis Functions (RBFs). Such RBF based interpolation of a
level set function was proposed in the past for segmenting images, but this method
does not support sparse datasets, as will be explained in Chapter 3. Our proposed
framework combines, for the first time as far as we know, the two uses of RBFs,
namely interpolation and segmentation, and it can therefore handle sparse data
inherently. This scheme is also more numerically stable, and its segmentation is

more robust to noise, than with classical level set methods.

3. We propose a new level set based registration method for sparse and non-overlapping
data, which exploits segmentation information. Local and global formulations are
proposed and combined, which provide better accuracy and robustness to local

minima respectively.

4. We integrate the three processes of registration, segmentation, and interpolation
in a single framework based on level sets. To the best of our knowledge, this is the

first time that these three stages are combined in a level set framework.
5. The proposed method is very general and can model objects
e of any shape, since it is not limited to a given class of objects like model based
methods,

e from data having any spatial configuration, in particular any number of 2D

slices having any position and orientation,

e from data from any modality, including multimodality data, given an ap-
propriate choice of segmentation method, e.g. using edges, intensity or prior

knowledge

e using any strictly positive definite (SPD) RBF.
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1.3 Thesis Structure

The thesis is laid out as follows:

e In Chapter 2, we present the sparse and misaligned medical tomographic data

which are used in this work.

e In Chapter 3, we review existing methods for object modelling from sparse and
misaligned sets of slices. We also describe in more detail related methods which
inspired the presented work, and methods which we will compare against in our

evaluations of our proposed framework.

e In Chapter 4, we introduce our new level set framework for simultaneous segmen-
tation of sparse image volumes and interpolation of the shape of the object, and we
provide both quantitative and qualitative evaluations of the quality and robustness

of interpolation on medical tomographic data.

e In Chapter 5, we introduce our new simultaneous registration and segmentation
method, and we integrate it to the level set framework of Chapter 4 in order to
add registration to it. We evaluate both the registration method and the complete

framework on various medical tomographic data.

e In Chapter 6, we propose an application of our framework to modelling the heart

from cardiac cine MRI.
e Chapter 7 concludes this thesis and discusses possible extensions of this work.

e In Appendix A, we demonstrate the possibility to apply our framework to modelling
from 3D point clouds and RGB-D data.

e In Appendix B, we propose another use of the proposed framework for image

inpainting and the restoration of videos.

e Appendix C presents some examples of raw and segmented cardiac cine MRI

datasets.



Chapter

Data

In this chapter, the sparse and misaligned medical tomographic data that is used to
illustrate and evaluate the proposed framework is presented. Typical examples of such
data are MRI and Computed Tomography (CT) data, which will be described in Section
2.1, with an emphasis on cardiac cine MRI. The characteristics of the data used in our

experiments in Chapters 4, 5, and 6 will be provided in Section 2.2.

2.1 Sets of 2D Medical Tomographic Images

3D and 4D medical tomographic data produced by MRI and CT scanners are in the form
of several 2D images which span the imaged volume. One dataset is generally made up of
several independent sets of images acquired during a single run of the acquisition device.
We refer to such independent sets of images as sequences. The data may be acquired
in 3D or 4D and using different techniques, thus leading to a range of different types
of sequences. They may be broadly classified between “spatial sequences”, when their
images are slices! spanning the whole volume and considered to be acquired at the same
time, and “temporal sequences”, when their images are several time-frames of a single
slice. We identify three types of sequences resulting from different image acquisition

scenarios:

lwhere “slice” denotes a spatial position and orientation of an image in the 3D or 4D volume
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e Stacks of slices acquired with different scanner parameters, as illustrated in Fig. 2.1a.

Such sequences qualify as spatial sequences.

e Stacks of slices acquired with different slice orientations, as in Fig. 2.1b. These

sequences are also spatial sequences.

e Temporal stacks of time-frames of a single slice, as in Fig. 2.1c. These are temporal

sequences.

(c)

Figure 2.1: Examples of datasets made up of independent sequences. (a) and
(b) spatial sequences: (a) one slice position of two MRI sequences of pelvis with
two different scanner parameters — left: Short Time Inversion Recovery MRI,
and right: T1 MRI, (b) MRI scan of a head with two different slice orientations
(axial and sagittal), and (c) three time-frames of a temporal sequence of a cine
cardiac MRI at one slice position.

The sequences of a dataset, regardless of their type, are acquired independently and
successively, during consecutive and short runs of the acquisition device. During the
acquisition of each sequence, the patient is required to be perfectly still, and occasionally
to hold their breath. This is achieved easily since the acquisition time of one sequence

is very short (of the order of a few seconds). Therefore, all the images of a sequence,
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spatial or temporal, can reasonably be assumed to be spatially aligned with each other

and can be treated as a rigid dataset, and are moved in unison during registration.

However, spatial alignment is not assured between different sequences. A detailed scan
requires typically 30 minutes to cover the whole imaged volume, during which it is
difficult to remain perfectly still. In addition, if the subject is required to repeatedly
hold their breath, as it is usual in cardiac MRI, the breath holds may not be the same.
These two effects — patient movements and inconsistent breath-holds — commonly lead
to different spatial positions of the region of interest, resulting in sequences being often

shifted and rotated with respect to others, as shown earlier in Fig. 1.1.

Frequently, 3D and 4D medical data are acquired with large gaps between their slices
in order to reduce the acquisition time. In the case of spatial sequences, this strategy
reduces the duration of each acquisition, and the patient needs to stay still during shorter
periods of time. In the case of temporal sequences, the total number of sequences is
reduced. In both cases, the resulting gaps between the slices are generally of the order

of a few pixels.

Cine MRI of the heart is an imaging protocol which is particularly subject to these
high misalignments and large gaps. Therefore, it will be given special attention in the

experiments in Chapter 6, and it is described in more detail next.

2.1.1 Cardiac Cine MRI

The modelling of the heart throughout a cardiac cycle provides essential information
for establishing a diagnosis, for example measuring the volumes of the hearts chambers
and their rates of change which allow assessing the ventricular and atrial function (see
Fig. 2.2a for an outline of the heart’s morphology). Cine MRI has placed itself as the
most suited imaging modality for this purpose, due to it being harmless to the patient,

its ability to image soft tissue, and its high in-plane spatial and temporal resolution.

Cardiac cine MRIs are 4D datasets made up of temporal sequences. The time-frames,
as well as the slice positions and orientations, are chosen by the radiologist to match the

dynamics and morphology of the patient’s heart.

As illustrated in Fig. 2.2b, the orientation of cardiac slices follow the two principal

orientations of the heart. Short-axis (SA) slices (Fig. 2.3a) cut the heart perpendicular to



2.1 Sets of 2D Medical Tomographic Images 12

its main axis, and span the heart from the bottom (apex) to the valves or the atria, while
long-axis (LA) slices cut the heart along its main axis, either through one ventricle (and

possibly atrium) as in Fig. 2.3b, or through both ventricles (and atria) as in Fig. 2.3c.

Left common
carotid artery

Left subclavian
artery

Aorta

Brachiocephalic artery Short-axis

plane (SA)

Superior vena cava
Left pulmonary
Right pulmonary arteries arteries

Left pulmonary
veins

Left atrium

Right pulmonary veins

Right atrium Semilunar valves

Atrioventricular

mitral) valve
Atrioventricular ( )

(tricuspid) valve

Left ventricle

Chordae tendineae W\ K Septum
Right ventricle

Inferior vena cava

Long-axis Right
plane (LA) ventricle (RV)
(a) (b)

Figure 2.2: Morphology based position and orientation of slices in cardiac
cine MRI. (a) anatomy of the heart, seen as in cut in a long-axis plane — blue
components indicate de-oxygenated blood pathways and red components indicate
oxygenated blood pathways, (b) position and orientation of slices in cardiac cine
MRI: examples of short- and long-axis slices. Note that other short-axis slices
are acquired parallel to the currently displayed slice, while other long-axis slices
may be acquired at any position perpendicular to the short-axis plane. The
figure (a) is reproduced from [69], and the figure (b) is reproduced from [4] with
modifications.

In addition to being adapted to the morphology of the patient, the spatial configuration
of cardiac cine MRIs depends also on the interest of the physician, who may want to
examine the dynamics of a chamber, or to look more closely at a valve for example. Thus,
different imaging protocols may be used which produce the various configurations that
were presented in Fig. 1.2. Traditionally, cardiac cine MRIs are made up of a stack of
parallel SA slices, that allow observing the left ventricle (LV), which is easily recognised
on such slices due to its round cross-section. In particular, the myocardium (black
circular muscle indicated by a red arrow in Fig. 2.3a) can be conveniently examined for
possible defects. The right ventricle (RV), indicated by the green arrow in Fig. 2.3a, may
also be segmented from these slices, although its boundaries look more fuzzy than those
of the LV and are more challenging to delineate. LA slices are becoming increasingly

popular for examining the apex of the heart and the valves (respectively the red arrow
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(b) (c)

Figure 2.3: Short- and long-axis cardiac cine MRI. (a) SA slice — the red arrow
indicates the position of the myocardium and LV, and the green arrow points to
the RV, (b) 2-chambers LA slice, (¢) 4-chambers LA slice — the red arrow and
lines highlight the apex and valves which are better visualised in LA slices.

and lines in Fig. 2.3c), and it is increasingly common for about two to four of them to
be acquired in addition to the traditional SA slices, as in Fig. 1.2b. Datasets made up
of LA slices, such as the radial dataset of Fig. 1.2¢, are also encountered more and more

often.

All the time-frames of a single slice position are acquired during a single run of the
MRI scanner, with the patient holding their breath in order to avoid image blurring due
to respiration movements. Generally, 25 time-frames are acquired and cover the whole
cardiac cycle. Their acquisitions are triggered by the electrocardiogram (ECG), so that
the same time-frame in all the different temporal sequences always corresponds to the
same moment in the cardiac cycle. In other words, the images are temporally aligned and
do not require registration in the time dimension. Note that alignment is not necessarily

(and is usually not) achieved in the spatial domain.

Indeed, remember that all the time-frames of a single slice position constitute a temporal
sequence which is acquired separately from the others. The protocol for cardiac MRI
acquisition is generally for the patient to breathe freely between the acquisition of two
sequences, then to prepare for the acquisition of the next sequence by either filling or
emptying their lungs, ideally in the exact same way for all acquisitions, and then to hold
their breath during the acquisition of the sequence. Such protocol makes it very likely
for the sequences to be misaligned with each other, due to patient movement during the
free-breathing periods and inconsistent breath-holds. The latter is particularly frequent
and happens when the remaining amounts of air in the lungs vary from one sequence to
another, resulting in displacements of the heart inside the chest [36]. In the case of MRI

acquired at end-expiration, the movements of the heart are commonly approximated by
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shifts in its SA plane, with very little shift along its long axis and rotation. For end-
inspiration acquisitions, the translation of the heart in the LA direction and its rotation
are more significant. Consequently, and in both cases, the different slices of the same
dataset are very often misaligned with regards to others, as illustrated in Fig. 1.1, and

they require registration.

A second characteristic of cardiac cine MRI is its incomplete coverage of the volume. The
first cause of this lies in the physical limitation of the scanner, which requires integrating
the images over a thick slice of the volume in order to improve the signal quality by
increasing the signal to noise ratio. This sets an undesirable limit on the possible slice
spacings. Thus, for a 1.5 T scanner, a typical slice thickness is 7 mm, hence slice spacing

is usually 7 mm or larger.

The second cause of incomplete coverage of the volume is the large gaps between cardiac
cine MRI slices, in order to reduce the acquisition time and number of breath-holds, and
thus limit the patient’s discomfort. Indeed, a full cardiac cine MRI scan takes usually
~30 minutes, and a breath-hold typically lasts for around 10 seconds and occasionally up
to 30 seconds. This prolonged period of immobility and the repeated breath-holds may be
difficult for young and elderly patients, and for patients suffering from a cardiac disease.
Therefore, radiologists routinely seek a compromise between a sufficient coverage of the
imaged volume and a limited number of sequences together with a reduced acquisition
time. Thus, a standard cardiac cine MRI contains ~10 SA slices (this number varies
with the size of the heart and the slice spacing) spaced by around 8 mm to 16 mm, for
in-plane pixel sizes of ~1.8 mm. Three or four additional LA slices may also be acquired.
Therefore, cardiac cine MRI are often very sparse and require interpolation in order to

make sense of the data and, for example, compute chamber volumes.

2.2 Datasets for Experiments

Our proposed framework will be assessed on a variety of artificial and real data in Chap-
ters 4, 5, and 6. The artificial data will be used to evaluate accurately the interpolation
and registration stages of our framework, while real data will provide a greater variety
of shapes and more realistic test conditions. We now provide the detailed characteristics

of both of these datasets, which are summarised in Table 2.1 at the end of this chapter.



2.2 Datasets for Experiments 15

2.2.1 Artificial Data

As highlighted in Chapter 1, the interdependency of segmentation with interpolation
and registration is a key aspect of modelling from medical tomographic data and is a
focus of this work. This interdependency makes it difficult to evaluate the interpolation
and registration stages alone, and especially to assess their quality separately from the
accuracy of the segmentation on real data. However, we note that as long as the segmen-
tation is correct, the result of the interpolation and registration stages depends only on
the spatial configuration of the images and on the shape of the reconstructed object. For
this reason, we will first evaluate the interpolation and registration stages, in Sections
4.5 and 5.5 respectively, on artificial data that is very simply and reliably segmented,
e.g. images made up of piecewise constant regions. To this end, we produce 3D datasets
in which images are made up of two regions of constant intensity, inside and outside of
the object to model, respectively, and we will process them using a segmentation model

based on intensity.

We produce the piecewise constant datasets by extracting spaced slices from volumes
containing several models. Our first model, which is used to test the interpolation
quality, is a geometrical shape made up of a cylinder and a hemisphere (Fig. 2.4a).
Both radial and axial slices are extracted from it. Two other models, used to test both
interpolation and registration, are the shapes of two LV cavities of the heart, which are
generated by segmenting two real cardiac MRI datasets, visually inspected for no visible
misalignment and containing almost no gaps, hence requiring only a minimal amount of
inter-slice interpolation (Figs. 2.4b and 2.4¢). From each LV model, we make 16 datasets
whose slice positions and orientations are the ones of 16 human volunteer heart MRIs.
The resulting artificial cardiac MRI datasets are made up of a stack of 4 to 19 SA slices
having pixel size ranging from 1.771 to 2.083 mm and slice spacings ranging from 5
to 20 mm, plus no to 12 LA slices with similar pixel sizes and various positions and
orientations. Therefore, even if the slices of these two times 16 datasets are black and
white images, they contain the shape of real hearts, and their positions and orientations

are also realistic since they are taken from real cardiac MRIs.

Similarly, registration will also be evaluated on an artificial brain’s ventricles model
(Fig. 2.4d), also generated from a real MRI with no or negligible gaps and misalign-
ments, and which is used to produced 9 artificial brain datasets, using the positions and
orientations of slices of 9 real brain MRIs. They are made up of two spatial sequences of

11 to 18 axial slices, with pixel size of 0.781 to 0.9375 mm and spacings of 3.3 to 6.6 mm,
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and one or two spatial sequences of 13 to 20 sagittal slices with pixel size of 0.898 to

0.371 mm and spacings of 3.3 to 4.8 mm.

(a) (b) (c) (d)

Figure 2.4: 3D models used to produce artificial datasets. (a) geometric model,
(b) LV cavity model A, (c) LV cavity model B, (d) brain ventricles model.

2.2.2 Real Data

We will also evaluate our proposed method on a collection of quasi-isotropic data from
which a number of slices are removed in order to create gaps, and which are artificially
misaligned. This will allow assessing quantitatively the interpolation and registration
properties of our method using the segmentation of the original full-volume data as a
ground-truth. These sets are one CT-scan of the acetabulum bone made up of a single
spatial sequence with parallel slices spaced at 0.5 mm with pixel size of 0.49 mm, a
CT-scan of the whole body also made up of a single spatial sequence with pixel size of
0.78 mm and gaps of 0.8 mm between the slices, from which we segment the LV cavity
and kidney, and two MRI scans of a spherical phantom, each made up of one spatial
sequence, with pixel sizes of 0.87 mm and 1.44 mm, and slice spacings of 0.9 mm and
1.5 mm respectively. For the interpolation tests, we make 8 datasets from each original
set, 4 being made up of parallel slices spaced by 5, 10, 15 and 20 pixels respectively, and
4 with the same horizontal slices plus one additional vertical slice in the centre of the
volume. For the registration tests, we create 4 datasets from each original set, each one
made up of two stacks of axial and sagittal slices, with slice spacings of 5, 10, 15 and 20

pixels.

In our experiments, 17 cardiac cine MRIs will also be used. Sixteen datasets have the
standard SA+LA configuration (Fig. 1.2b) and are made up of temporal sequences, with
a stack of SA images and 0 to 12 LA images. The pixels range in size from 1.77 mm to

2.08 mm, while there are 5 mm to 20 mm gaps between the parallel SA images, and 25
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time-frames. These datasets were acquired during clinical examinations of real patients,
using a standard acquisition protocol. The last dataset has an axial configuration, similar
to the dataset shown in Fig. 1.2¢, and is made up of 12 LA slices plus one SA slice, with
pixel size of 1.771 mm, and also 25 time-frames. All datasets have been acquired at
end-expiration. The spatial configuration of one example of standard dataset is shown
in Fig. 2.5. The images that make up this dataset are displayed in Figs. 8 to 14 of
Appendix C, and for convenience the images of the first time-frame are presented in
Fig. 2.6.

Figure 2.5: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices — 3D view of the dataset at one time-frame. Note that the spatial
configuration does not change between time-frames.

Finally, in order to demonstrate the versatility of the proposed framework, we will also
test our method on 9 sparse MRIs of neonatal brains made up of two spatial sequences
that are stacks of T1- and T2-weighted images, where each stack is composed of parallel
slices spaced at 3.3 mm with a pixel size of 0.78 mm. We will also use two sparse CT-
scans of bones made up of a single spatial sequence each, whose parallel slices, spaced at
0.5 mm, have pixels of size 0.35 mm, and one MRI of the hip joints, made up of one T2-
Weighted Fast Spin Echo axial (spatial) sequence, one Short Time Inversion Recovery
coronal sequence, one T1-Weighted Spin Echo coronal sequence, and two T2-Weighted
2-D Multi Echo diagonal sequences focusing on each hip joint. All hip sequences are
composed of 15 to 19 images, with pixel sizes ranging from 0.742 to 1.641 mm and
spacings ranging from 3.3 to 6 mm. Examples of these images are provided in Figs. 2.7
to 2.9.
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SA 9 SA10 SA 11 SA 12 LA1  LA2 LA 3

Figure 2.6: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices — images of the first time-frame. Please refer to Figs. 8 to 14 of
Appendix C for the complete dataset.

(a) (b) (c)

Figure 2.7: Example of T1- and T2-weighted MRI of brain. Slices from the
dataset of Fig. 2.1b. Central slices of the (a) T1-weighted, and (b) T2-weighted
axial sequences, and of (c) a T1-weighted sagittal sequence. Note that not all
datasets contain a sagittal sequence.

(a) (b) © (d)

Figure 2.8: Example of MRI of the hip joints: central slice of (a) a T2-Weighted
Fast Spin Echo axial sequence, (b) a Short Time Inversion Recovery coronal
sequence, (c¢) a T1-Weighted Spin Echo coronal sequence, (d) a T2-Weighted
2-D Multi Echo diagonal sequence.
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(a) (b)

Figure 2.9: Examples of CT-scans of bone: central slice of ¢l (a) and ¢7 (b)
vertebra datasets.
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Table 2.1: Body of data used in this work
. . Spatial configuration a
Modality Object - g 3
Q Sli © $
= 1ce . . — un
a3 Nb. _ Pixel size = %
spacin d
.qg slices paciig (mm) = A
Geometric )
Artificial Axial 12 5.73 1 1 1
model
o Geometric )
Artificial Radial 13 - 1 1 1
model
o SA 4 to 19 5to 20 | 1.77 to 2.08
Artificial LV 1 32
LA 0 to 12 - 1.77 to 2.08
Axial
o . 11 to 18 | 3.3 t0 6.6 | 0.78 to 0.94
Artificial Brain (2 sets) 1 9
Sagittal
(Lor2 | 13to 20 | 3.3 to 4.8 | 0.90 to 0.37
sets)
CT Acetabulum| Axial 132 0.5 0.49 1 1
cT Kidney Axial 142 0.8 0.78 1 1
cT LV cavity Axial 99 0.8 0.78 1 1
MRI Phantom Axial 192 0.9 0.87 1 1
MRI Phantom Axial 80 1.5 1.44 1 1
) SA 4 to 19 5to20 | 1.77 to 2.08
Cine MRI Heart 25 16
LA 0 to 12 — 1.77 to 2.08
Cine MRI Heart Radial 13 - 1.77 25 1
Axial
) 11 to 18 | 3.3 t0 6.6 | 0.78 to 0.94
MRI Brain (2 sets) 1 9
Sagittal
(Lor2 | 13t020 | 3.3 to 4.8 | 0.90 to 0.37
sets)
CT Vertebra Axial | 47 or 62 0.5 0.35 1 2
Axial 19 6 0.74
) Coronal
MRI Hip 19 4.8 1.64 1 1
(2 sets)
Diagonal 15 3.3 0.86




Chapter

Background

In this chapter, we present existing methods for object modelling from sparse and mis-
aligned tomographic data, and we highlight shortcomings and problems that we address
in this work. We also provide more details and formulations for the most popular of
these works, which we will compare against in Sections 4.5 and 5.5 and Chapter 6. In

the last section, we present the works which inspired and justified the proposed method.

3.1 Overview of Object Modelling Methods for Sets
of Medical Slices

The approaches to modelling objects from sparse and misaligned sets of slices can be
broadly classified into two main categories, namely sequential and integrated methods.
The former performs registration, segmentation, and interpolation independently and in
turn, while the latter performs two or all of these stages simultaneously. Tables 3.1 and
3.2 present an overview of the existing methods for registration and object modelling
from 3D sparse sets of slices respectively. An overlap exists between these tables where

the three stages are integrated (last row of Table 3.1).

21
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Table 3.1: Overview of existing approaches for registration of 3D sparse medical

data
Approach Type Main drawbacks
Based on Unreliable similarity
Independent e measure due to limited  Failure is cascaded
. . similarity measure . .
registration slice intersections to subsequent

Based on Lack of robustness of =~ modelling stage
segmentation the independent 2D
results segmentations

Integrated with
segmentation and
interpolation

Model based Training phase, Lack of flexibility

Table 3.2: Overview of existing approaches for 3D modelling from aligned sparse
medical data

Type of Type of
Approach segmen- interpo- Main drawbacks
tation lation
Segmentation Surface i Lack of
= followed by 2D . robustness of the First step
= . : terpolation : .
5 interpolation segmentation is critical
% Interpolation Imace in. [ll-posed
n followed by 3D ge ! interpolation
) terpolation
segmentation problem
3D, Regis-
tration Rely on Trainine phase
Model based and defor- | model & DIase,
. o Lack of flexibility
mation of | continuity
a model

3.1.1 Sequential Approaches

Traditionally, object modelling from sparse and misaligned sets of slices involves sequen-
tial registration, segmentation, and interpolation of the images. This sequential approach
requires aligning the images at first, in order to ensure that they provide coherent in-
formation to the subsequent segmentation and interpolation processes. Interpolation
usually follows registration, in order to fill the gaps in the data volume, before 3D seg-
mentation is applied to the interpolated volume. However, in some cases, segmentation
is performed first in 2D, then a 3D surface is interpolated from the resulting 2D contours.
In the rest of this section, we list the most common registration methods first, then we

describe existing interpolation solutions.
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Independent Registration — Image registration methods can be classified into two
categories: intensity-based and feature-based. Intensity-based methods align two images
by comparing patterns in their intensity, while feature-based methods exploit information
on the content of the images and correspondences between matching points between the

two images’ contents.

Note that most registration methods found in the literature apply to overlapping images,
and little attention has been devoted to the registration of intersecting 2D images slices.
Some authors, such as Chandler et al. [8], Shen et al. [43], Smolikova-Wachowiak et al.
[48], proposed to align the 2D slices to a reference high-resolution volume. Such methods
will not be considered in this study, since a full-volume data is usually not available in

common medical tomographic applications.

Amongst intensity-based methods, algorithms using Mutual Information (MI) [11, 54]
and Normalised Mutual Information (NMI) [50] are very popular for aligning multi-
modality medical images or volumes. MI and NMI are similarity measures which estimate
the quantity of information shared by two images, and are maximal when the two images
are perfectly aligned. Indeed, when two images overlap perfectly, knowing the content of
one of the image allows knowing the content of the other one completely, which means
that they contain the same, shared, information. The NMI measure will be presented in
more detail in Section 3.2.1. These two similarity measures are particularly popular in
medical imaging, because they do not require the images to have the same intensities,

and they are therefore suited to align images from different modalities.

Although most MI and NMI registration algorithms have been proposed for overlapping
images and dense volumes, a few works have focused on sparse data. In particular,
Lotjonen et al. [33] proposed to use NMI to register, by translations, cardiac MRIs
made up of two perpendicular stacks of parallel 2D slices separated by large gaps. This
method is very popular for cine cardiac MRI registration, e.g. [3, 16, 24, 32, 44], and will
be described in more detail in the formulation Section 3.2.1. A drawback of similarity
measure-based registration methods is that they require enough intersection points be-
tween the images in order to compute significant and reliable similarity measures. In the
case of Lotjonen et al. [33], the method was evaluated on relatively dense datasets, made
up of two orthogonal stacks of SA and LA slices, so each image had several intersecting
images and a reasonable number of intersection points with them. In our experiments
in Section 5.5, we will show that this method performs less satisfactorily on sparser

datasets.
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Other intensity based methods have been proposed e.g. by Slomka et al. [46] and Elen
et al. [17] who registered cardiac cine MRIs, made up of one two-chamber and one four-
chamber LA slices plus a stack of SA slices, by optimizing the match of intensity profiles
along the intersections of the various slices. In [46], the images were registered by in-
plane translations and out-of-plane rotations in the case of the SA images. In [17], all

images were registered by 3D translations.

Li and Denney [29] presented a feature-based method to register internally intersecting
and largely spaced cardiac MRI slices. Contrary to the previous methods, they used the
segmentation contours obtained from preliminary independent 2D segmentations of the
images, rather than measures of intensity similarity. The drawback of this approach is
that registration is highly dependent on the quality of segmentation, while the indepen-

dent 2D segmentations may not be consistent with each other.

Independent Interpolation — Following registration, modelling an object from sparse
sets of 2D slices requires interpolating in the gaps in the data. Li et al. [28] and Pihuit
et al. [41], amongst others, proposed to first segment the slices independently, then to
interpolate the yielded 2D contours into a 3D surface. Again, the independent 2D seg-
mentations may not be consistent with each other, and incorrect segmentations would
not provide a reliable ground for the shape interpolation. Liu et al. [31] proposed a
method to interpolate surfaces from segmentation contours obtained from image slices
having arbitrary positions and orientations. In their work, the segmentations are per-

formed manually to ensure they are correct.

More commonly, a 3D image is first interpolated from the 2D slices, e.g. as in [14, 40,
42, 63], and then it is segmented in a second step. Image interpolation methods may
be separated into two categories: intensity-based and shape-based methods. Amongst
intensity-based methods, Rahman and Wesarg [42] and Yuan and Yuan [63] proposed
super-resolution approaches to fuse two orthogonal stacks of parallel slices. Rahman and
Wesarg [42] used an observation model to estimate the initial image from the observed
ones, and Yuan and Yuan [63] used a wavelet fusion technique which selects the direction
of interpolation that better preserves edges. Shape-based methods attempt to preserve
the shape of objects while interpolating the images, and rely on these shapes to drive the
interpolation. They therefore tend to be more robust than intensity-based methods and
preserve edges better. Grevera and Udupa [21] have interpolated image intensity by first
converting an N-D grey-level image into an (N+41)-D binary image, using the grey-level
values to derive the additional dimension. This effectively converts the image into a sur-

face embedded in an (N+1)-D volume. A distance function-based surface interpolation
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algorithm was then used to close the holes in the surface, before converting it back into
an N-D image. Morigi and Sgallari [37] noted that this shape-based interpolation is the
same as interpolating every grey-level line (i.e. iso-surface intensity contour lines) using
distance transform interpolation. Since level sets are distance functions, they proposed
to use them to interpolate between parallel slices by level set morphings. Pan et al.
[40] and Cordero-Grande et al. [14] performed interpolation between matching regions of
parallel images. These matching regions were found using preliminary segmentations of
the images in [40], and non-rigid, topology-preserving registration in [14]. The method
of Cordero-Grande et al. [14] will be compared against in Section 4.5 and Chapter 6,

and is therefore described in more detail in Section 3.2.2.

The problem of interpolating sets of 2D images is ill-posed, since the slices may have vari-
ous positions and orientations, as seen in Fig. 1.2, and most of the available interpolation
methods can only handle stacks of parallel and equally spaced images, e.g. [14, 37]. This
limitation may lead to the loss of crucial information, such as in cardiac MRI, where only
SA images are traditionally used, while LA images, when available, are often discarded.
Yet these LA slices contain unique and important information on the position of the
heart valves and the shape of the apex of the ventricles, as highlighted in Section 2.1.1

and illustrated in Fig. 2.3b, and they are therefore valuable for the segmentation.

Another issue for image intensity interpolation arises from the different gains and con-
trasts that images of the same dataset may have, as seen in Fig. 1.3. This commonly
leads to the creation of interpolation artefacts which may bias the subsequent segmenta-
tion, as in Fig. 3.1. Woo et al. [59] proposed in their work on super-resolution by volume
fusion to equalise the intensities of corresponding regions in three non-isotropic volumes,
prior to reconstructing a high resolution fused volume. Their intensity equalisation stage
used an intensity matching method based on spline regression. However, modifying the
intensities of medical images may be controversial because of the risk in erasing valuable

information and creating erroneous features.

For similar reasons, the image interpolation approach is also restricted to images of the
same kind, while in some applications it may be beneficial to segment data from different
modalities simultaneously. Such data may highlight different properties of the object, as
seen in Fig. 2.1a, and the combination of different images may allow the signal to noise
ratio to be improved. An example will be given in Chapter 4 where T1 and T2 weighted

MRI of brain are processed simultaneously.

Finally, these sequential approaches may lack robustness, since the success of one stage
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(e)

Figure 3.1: Image interpolation followed by segmentation of SA and LA slices
having different gains and contrasts. The interpolation is performed by the
image intensity interpolation of [21]. Segmentation is done using an edge based
segmentation algorithm [61] and its result is displayed in red. Top row: artificial
geometrical shape dataset, bottom row: real cardiac MRI. (a) and (c): central
vertical slice of the dataset viewed from the side, (b), (d) and (e): interpolation
and segmentation results viewed in a central vertical slice ((b) and (d)) and in a
central SA (horizontal) slice (e).

depends on the success of previous stages. In addition, performing registration, seg-
mentation, and interpolation in turn may not be appropriate since they are inherently

related, as explained in the introduction chapter.

3.1.2 Integrated Approaches

A few attempts have been made to integrate two or three of these stages in a single
framework rather than process them sequentially. Notably, registration and interpolation
have been combined with segmentation, respectively, and all together, in order to exploit

the shape information contained in segmentation results, and thus gain extra robustness.

Integrated Registration and Segmentation — Registration and segmentation of sets
of 2D slices have been combined to update the two stages simultaneously, mostly using
statistical frameworks, e.g. [60] and [19] amongst others, or iteratively in turn, e.g. [51].

Le Guyader and Vese [25] proposed to align an image and a template while segmenting
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the image in a level set framework, by deforming a displacement vector field under the
guidance of an energy functional which measures the quality of the segmentation of the
image. These methods are designed to register overlapping images and can not handle

several intersecting 2D images in a 3D volume.

Yezzi et al. [62] presented a level set based method to register and segment two overlap-
ping images or volumes simultaneously while minimising an energy containing a region-
based segmentation term and an alignment term. This method does not apply to sparse
datasets made up of more than two images, but its integration strategy inspired our pro-
posed integrated registration method for multiple sparse data, which will be presented
in Chapter 5. We will detail this method in Section 3.3.3.

Integrated Segmentation and Interpolation — Methods which register and deform a
model on the images rely on the continuity of the model to segment the gaps in the data.
This can be viewed as simultaneous interpolation and segmentation. Amongst others,
van Assen et al. [52] used Active Shape Models (ASMs), Zambal et al. [65] used combined
2D Active Appearance Models (AAMs) and a 3D shape model, Lotjonen et al. [34] used
a triangulated surface model, and Cordero-Grande et al. [13] applied a parametric model
to process sparse cardiac MRIs. The main drawback of these model-based methods is
that they require a training phase and are restricted to the class of objects they have
been trained with. They may also lack flexibility to finely model shapes presenting a

high degree of variation.

When dealing with misaligned data, these integrated segmentation and interpolation
methods, hereafter also referred to as semi-sequential, require an independent registra-
tion to be performed beforehand. In Section 5.5 and Chapter 6, such semi-sequential

approaches with a separate registration stage will be shown to lack robustness.

Integrated Registration, Segmentation, and Interpolation — Zambal et al. [64]
also registered, segmented, and interpolated sparse 3D cardiac MRI data made up of
parallel SA images using a two component deformable model which provided both inter-
polation and registration. The model components were updated iteratively: 2D AAMs
segmented the individual slices, and a global shape model linked the 2D AAMs together.
Registration was performed at every iteration by aligning the AAMs on the global 3D
shape model. Interpolation was provided by the continuity of the model. This method
also suffers from the drawbacks of the model-based methods, notably the lack of flexi-

bility and the requirement of a training phase.
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The method of Zambal et al. [64] is designed for modelling the heart from cardiac MRI,
therefore it would have been desirable to compare our proposed fully integrated frame-
work against it in our experiments on cardiac cine MRIs in Chapter 6. However, the
authors informed us that their code and prior (AAM and 3D shape) models were no
longer available. Since this method is the only work we know of that integrates the
three stages of registration, segmentation, and interpolation, we can only compare our
framework against sequential and semi-sequential methods in Chapters 4, 5, and 6. We

now describe these methods in more detail.

3.2 Focus on State-of-the-Art Methods used for Com-

parison

We now provide more details on key state-of-the-art registration and image interpolation
methods that were mentioned in Section 3.1 and that will be used for comparative

evaluation in Chapters 4, 5, and 6.

3.2.1 NMI Based Registration and Movement Correction in
Cardiac MRIs

Normalised Mutual Information — NMI is a similarity measure proposed by Studholme
et al. [50] to register 3D multi-modality medical images with varying degrees of overlap.
It is based on information theory, and in particular on the Shannon-Wiener entropy

measure H, which estimates the uncertainty in a random variable, and is equal to

N
H (pl>p27 "'7pN) = _sz IngZ ) (31)
=1

where ¢ are the indexes of the possible values for the variable, with associated probabil-

ities p;.

This entropy can be used to evaluate the amount of information contained in an image,
with the random variable being the pixel intensity, and its probability distribution being
given by the normalised histogram of the image. A way of interpreting this measure is

that, when the random variable has a high probability of having a given value, then it
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is easy to guess which value will be yielded by a random draw on the variable, e.g. the
random pick of a pixel in the case of an image. The uncertainty on the variable is therefore
low, and so is the associated entropy H. In other words, the information content is low,
since very few bits are needed to encode it. On the contrary, if the variable has equal
chances to have several values, then the guess on the outcome of a random draw is more
difficult and the uncertainty on the variable and its entropy are high. An image with a
high entropy requires therefore more bits to code its information content, and it is said

to contain a lot of information.

The joint entropy of two images is an interesting tool to estimate the amount of infor-
mation they share and therefore register them. This joint entropy may be computed
by considering the random variable V (i1,145), with i; and iy being the intensities of a
pixel in the two images respectively. The distribution of this variable is provided by
the joint histogram of the two images. When the images are well aligned, the most
probable intensity of a given object in one image should always be associated with the
corresponding most probable intensity of the same object in the second image. Thus,
the associated value of the joint random variable should have a frequent occurrence, and
the joint entropy should be low. On the contrary, when the two image are badly aligned,
knowing the intensity of one pixel in an image does not allow guessing the intensity of
the same pixel in the second image with a high certainty, and therefore the joint entropy
is high. Using this idea, authors such as Collignon et al. [12] and Studholme et al. [49]

investigated the use of joint entropy to register images.

However, this approach makes the assumption that if there are large regions in the two
images, a good registration of the images will optimise their overlap in order to maximise
the co-occurrence of their most probable values. This may not always be true, notably
for images with only partial overlap of a large homogeneous background. In such cases,
the optimal alignment and overlap of the background, which contains less uncertainty

on the joint intensities, may not be the optimal registration of the foreground object.

Viola and Wells [54] and Collignon et al. [11] addressed this issue by proposing a new
measure of similarity, which prevents the artificial minimisation of the marginal entropies
of both images in the region of overlap, by including them in the similarity measure.
Their new measure was the relative entropy, or Mutual Information, of the two images

A and B, which should be maximum for well aligned images:

MI (A, B) = H(A) + H(B) — H(A, B) . (3.2)
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Nevertheless, Studholme et al. [50] showed that MI still does not completely remove the
influence of the overlap on the images. Indeed, in some cases, its maximisation may seek
to optimise the marginal entropies by varying the size of the overlap region, without
modifying the joint entropy. Therefore, they proposed a new measure, the Normalized
Mutual Information, which is independent of changes in the marginal entropies in their
region of overlap, and whose maximisation seeks to minimise the joint entropy with

respect to the marginal ones:

H(A) + H(B)

NMTI (A, B) = A D)

(3.3)

NMI Based Internal Registration of SA and LA Cardiac Cine MRI Slices —
Lotjonen et al. [33] proposed to apply NMI to the registration, by translation, of sparse
cardiac cine MRI datasets made up of two stacks of SA and LA slices. They maximised
the NMI between one slice and all other intersecting slices, iteratively. At each iteration,
a slice was chosen randomly, and was moved in the direction which better increases its

NMI with all its intersecting slices.

Because each temporal sequence of a dataset is acquired during one breath-hold, all of
its time-frames can be considered to be spatially registered with each other, and so they
were moved together when aligning the different sequences. The authors found that using
all the time-frames to compute the NMI did not increase the accuracy of the method,
therefore they recommended to use six time-frames only. The displacement step at each
iteration was initially set to the size of an image pixel, 7.e. 1.4 mm in their experiments.

Then, it was reduced by a factor of two to refine the registration.

Note that the datasets of Lotjonen et al. [33] were relatively dense when compared with
ours (see Chapter 2), since they were made up of two stacks of parallel SA and LA slices,
containing respectively 4 to 6 SA and 4 to 8 LA slices, and thus a lot of intersections. Our
experiments in Chapter 5 will show that, for sparser datasets, the NMI method struggles

to compute accurate similarity measures in the very limited overlap region available.

3.2.2 Object-Based Tomographic Image Interpolation

Cordero-Grande et al. [14] proposed a method to interpolate pixel intensities between

parallel and equally spaced images. It falls in the object-based category, since it uses non-
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rigid registration to find matching points between two images to interpolate the intensity.
It is currently the state-of-the-art image interpolation for cardiac cine MRI, and we will
compare the interpolation results of our proposed method against it in Chapters 4 and

6. Thus, we present it in more detail now.

Non-rigid registration between two adjacent slices — The registration seeks a
deformation function wu (r) which transforms a coordinate r in an image Iy into the
coordinate of a matching point in a second image [;. This function is computed in a
multi-resolution manner, with the result u' at a resolution level [ as the initialisation

=1 At each level, the update of the transformation function

of the next finer level u
is allowed to take values in a discrete set of transformations only, such that u'(r) =
r+ut! (r) + kAL with Al being the unit quantised transformation at resolution /, and

k € K an integer in the space of authorised deformations K.

The transformation function u is obtained as the maximum a posteriori configuration of
a Markov Random Field (MRF), defined as the field X of the quantised deformations
X, at grid sites s € S (S being the ensemble of sites at a given resolution), which take
the values @ = {zs = k;, s € S}. The MRF is built by defining dependencies between
neighbouring sites, with the neighbouring relation between two sites s and s’ being
defined as ||r, — ry||* < 2. In a Bayesian formulation, and according to the Hammersley-
Clifford theorem [22], it’s posterior probability P (x|ly, I1) is expressed in terms of an
energy Enrr (2, Iy, I;) which is the sum of some prior and observation likelihood energies

Ep and FEop, respectively.

The MRF integrates intensity and gradient magnitude matching constraints between two
corresponding areas of the registered images in the observation likelihood energy function

FEor, expressed as two potential terms Vi (xs, o, [1) and Vi (xs, |Vardol|, (|VarLal])-

ZG |F0 rs+rn) Fl(rk: +rn)|

Vi S,F,F
1 (@er Fo, B o (ry + 1) |+ 1B (vn, 1)

, (3.4)

[n|<p

where Fy and F) are either the intensity of the two images or the magnitude of their
gradients after convolution with a Gaussian kernel M of standard deviation op;. r is
the position of site s in the first image, ry, is the position of the corresponding point in
the other image, r, is a spatial shift of n pixels, p is the size of the region around site
s which is considered for computing the potiential, and G is a Gaussian with standard
deviation og = p — %, which ensures that pixels located at distance n from site s, with

In| > p, are negligible.
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A third constraint on the MRF, defined as the following term in the prior energy FE,,

V2 (1’5173332) — H(rk82 B 1‘52) B (rk51 B rsl)H (35)

||rs2 - rSl“ 7

penalises important variations of u between two neighbouring sites s; and s,. Indeed,
rp. — s expresses the deformation at site s between the two images, and its variation

between the two sites is minimised.

A second term in the prior energy function E), seeks to preserve the topology, i.e. the
connectivity and neighbourhood relationships of the image’s objects, by restricting the
Jacobian of the transformation function u to positive values. Indeed, functions that have
a positive Jacobian preserve the orientation. This restriction of the Jacobian to positive
values is the main contribution of [14]. Its formulation is based on the approximation
of the Jacobian J inside a square defined by four summit positions ry, ra, rz, and ry,
by the linear interpolation of its values J (r;) at the four summit points. A necessary
and sufficient condition for J to be positive inside the square is that all four J (r;) are
positive. Thus, the topology preservation term attempts to restrict the finite difference
approximation of the Jacobian at every site to positive values. Given a site so, the finite
difference is calculated at sy using the three summits s, sy and s3, where s; and s3
are defined as being aligned with s, along the e; and es axes respectively. Thus, the

penalisation of the approximation of the Jacobian at s, that is not positive is given by

o )_U<<n,ksz—rl,kﬂ)(rz,kw—m,ksg) ) <—><>)
S19y4sgys3y) —

(Tl,SQ - Tl,sl) (7"2’52 - 7"2’53) (TQ,SQ - T2,81) (Tl,sz - T1,83)
(3.6)
with
0 ifz>0
U (z) = | (3.7)

1 otherwise

7i,s; denotes the i" component of r,,. Remember that Tk, is the position of the point

in image I; corresponding to the site s; of image /.
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The final energy function for the posterior field is then

Eyvrr (x,1o,11) = o9 Z Vi (zs, Lo, L) +

seCq
o 3 Vi IVl [V +
seCy
(3.8)
A Z Va (x81>x52) +
51,52€C>

f Z %)(x817$527x53) )

51,82,53€C3

with og, o1, A and & weighting the influence of their associated term. C; are cliques of
order 7, which contain 7 elements chosen amongst the grid sites, such that, for ¢ > 1, any

pair of their elements are neighbours.

For each resolution level [, the field is optimised and its parameters are jointly estimated.
Parameter A is estimated using the Maximum Pseudolikelihood Estimator (MPLE) in
order to maximise the prior associated with the third energy term in (3.8). The two o;
are estimated using the Maximum Likelihood Estimator (MLE) in order to maximise
the observation likelihood. £ is not estimated, but instead it is set at a high value in
order to ensure that the topology is preserved. The Iterated Conditional Modes (ICM)
algorithm is used to optimise the MRF and obtain the transformation function u at grid
sites. After u is obtained at the last, finer resolution level, it is linearly interpolated

between the grid sites.

Interpolation between two adjacent slices — The previous registration method is
used by Cordero-Grande et al. [14] to find corresponding points in two images, between
which to interpolate the images’ intensities. Both forward and backward registrations
are computed, in order to ensure that the whole procedure is unbiased, i.e. the roles of I

and [, are interchangeable. The two results are used jointly to compute the interpolation.

Let’s denote by r, a gap point located at a fraction 7 of the distance between the two
images. Then, two sets of two corresponding points ry, r and ry, ¢, and ry,, and ry, , are
selected, one for each forward and backward transformation. Their choice is such that
the transformation path which links two corresponding points passes through r,.. Note
that the topology preservation constraint of the registration algorithm ensures that only
one such path passes through the gap point for each registration direction. The intensity
at the gap point is then obtained as the sum of the linear interpolations along the two

forward and backward paths, weighted by terms W, which reflect the confidence in the
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selection of the paths and image points,

[y = Vs (t10.) (L= 7) Lo (vro,p) + 71y (e )] + W (01,) (1= 7) Lo (x100) + 711 (r1,.0)]
’ Wi (vr. ) + Wa (r1,) 7
(3.9)

P (Io(rry:), I (vr ) [25;00) P (IVarLo (vro0) || 5 [ Varhy (v 0) || |2s; 01)

Wi rr.;) = —10
(xs,) 8 S P (I (r100) s (0102 o 00) P (1 ardo (o) |- IV arTs (e )] s 71

kseK

(3.10)

with ¢ being f or b, and j being 0 and 1, for the forward and backward registrations

respectively.

3.3 Focus on Key Related Works

This section details the formulation of methods which are the basis or inspired the new
framework which we will present in Chapters 4 and 5. We first provide a general presen-
tation of the level set method for image segmentation, which we will extend in Chapter
4 to handle sparse data by combining the segmentation and interpolation abilities of
Radial Basis Functions. Then, we introduce an integrated registration and segmenta-
tion method for dense data, based on level sets, which we will generalise and extend in

Chapter 5 to deal with sparse data.

3.3.1 Level Set Method

The level set method was proposed by Osher and Sethian [39] for simulating and tracking
moving interfaces. It has become a widely used tool for image segmentation, where it
falls into the active contour category, which evolves a contour towards the boundaries of

the object to be segmented.

The key idea to the level set method is to define the active contour C' as the zero-level
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iso-contour of an embedding function ¢,
C={z:¢(x)=0}. (3.11)

We adopt the common convention of ¢ being positive inside the contour and negative

outside. This concept is illustrated in Fig. 3.2. In this case, the normal N to C' can be

Vo

computed as N = — ool

Figure 3.2: Level set method — illustration of a 2D contour embedded in a 3D
function. The figure is reproduced from [38].

This embedding allows evolving the contour through the update of ¢, by solving the
following Partial Differential Equation (PDE),
99

— —F = A2
~ _F|Ivell =0, (3.12)

where F' is the speed of the contour C' in the direction of its normal, which can be
computed using any method of choice, based on the image data or on some internal

geometrical constraint for the contour.

Equation (3.12) is more easily solved if the implicit function ¢ remains smooth and if
the norm of its gradient stays close to 1 as the contour evolves, notably due to the term
|Vé||. Therefore, it is usually required to re-normalise ¢ regularly during the iterative
segmentation process. This is commonly achieved by solving the following equation, at

regular intervals,

%0 — sign () (1~ [V9l)) (3.13)

The computation of (3.12) also requires a careful choice of a numerical scheme in order

to maintain numerical stability [39]. Thus, upwind schemes must be used in the compu-
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Table 3.3: Summary of the main uses of RBF's

Use of RBF Segmentation | Interpolation
Scattered data, e.g. [18] v
Object modelling from point clouds, e.g. [5] v
Level set implicit function, e.g. [1, 45, 56] v
Proposed modelling from sparse data % %
(Chapter 4)

tation of the finite differences, in order to take into account the direction of propagation
of the information. For example, when using a first order upwind scheme, the choice of
forward or backward finite difference is performed dynamically depending on the speed
of the interface, in order to only use points which have already been swept by the mov-
ing interface. These upwind schemes may sometimes be difficult to implement. This
motivated the introduction of RBF interpolated level set methods, based on Ordinary
Differential Equations (ODEs), which we will present in Section 3.3.2.

3.3.2 RBF Methods

RBFs are radially symmetric functions, centred at a control point x;, which can be

expressed as

i (x) = (|x = xil) (3.14)

where ¢ : Rt — R, and ||.|| usually denotes the Euclidean norm. Thus the value of an
RBF at a point x depends only on the distance of this point to the control point x; of
the RBF. Some functions that qualify as an RBF are thin-plate splines, cubic splines,
polyharmonic splines, Gaussians, multiquadrics (MQ) or Wendland RBF's [18].

RBF's are commonly used for interpolating scattered data, and this led to the develop-
ment of two other major uses for RBFs, namely reconstruction of 3D surfaces from point
clouds, and image segmentation in a level set framework. These three main uses of RBFs
are summarised in Table 3.3 and will be described next. We will propose a new use for
RBFs in Chapter 4 (last row of Table 3.3).

RBF Interpolation of Scattered Data — A function ¢ (x) may be interpolated by a
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set of N RBFs centred on N control points x; as

¢ (x) = Z an; (x) +p(x) (3.15)

where «; is a weight associated to the ith RBF and p(x) = po + p1z + poy + p3z is a
first-degree polynomial which accounts for the linear and constant portions of ¢ (x). In
order to ensure a unique solution, additional constraints must be respected when p (x)

is not null:

Yiliai=0; Yl iem =05 Dl iy =0; XL a5 =0. (3.16)

If the values f; of the interpolated function are known at the control points, i.e.

then, the coefficients a; and p; can be obtained by solving the linear system of N + 4

equations defined by (3.15) to (3.17), which can be rewritten in matrix form as
Ha =f, (3.18)
with

A P

H=
PT 0

c R(N+4)><(N+4) ’ (319)

(0 (Xl) e YN (Xl)
A= : : e RV*NV (3.20)

(0 (XN) e Yy (XN)

P=|: : = = | eRV, (3.21)

I zy yn 2n

T
= | -+ QN Po P1 P2 D3 GRNH; (3.22)
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T
f=|f -~ fvy 000 0] eR¥™. (3.23)

Object Reconstruction from Point Clouds by Implicit Surface Fitting — Carr
et al. [5] exploited the interpolation property of RBFs to reconstruct closed 3D surfaces
from sparse point clouds. Their method is based on the representation of the surface as
the zero-level iso-contour of an embedding distance function, similar to the embedding

of the segmenting contour of a level set method (see Section 3.3.1).

The embedding function is defined as the distance to the closest point of the surface,
and its values can be computed initially along the normals of the surface for each data
point. If the normals are not available, they must be estimated from the point cloud as a
preliminary step, e.g. as in [2]. Then, RBF interpolation is performed on the embedding
function in order to recover its values everywhere in the volume. As a result, the surface
is implicitly defined by the embedding function fitted to the data points, and can be

extracted as the zero-level iso-contour of the embedding function.

Noise and outliers may greatly reduce the performance of this method by biasing the
computation of the initial values of the embedding function. Therefore, a smoothness

term has been proposed by Carr et al. [5] to reduce the influence of noisy points.

For large point clouds, the evaluation of (3.18) can be extremely time and memory con-
suming, and Carr et al. [5] recommend the use of the Fast Multipole Method (FMM) [20]
in order to reduce the computation costs. This method approximates the computations
which involve RBF centres located far from the point for which a value is estimated.
Carr et al. [5] also proposed a greedy algorithm that reduces the number of data points

used in the computation while maintaining a given desired accuracy.

RBF Interpolated Level Set — Wang and Wang [55] proposed a new level set frame-
work based on the interpolation of the level set function by RBFs. This new framework
has the advantage of replacing the usual PDE presented in Section 3.3.1 by a simpler

system of coupled ODE, and it does not require reinitialisations.

In their implementation, the authors chose to use MQ splines, which are known for

providing the best interpolations of scattered data [18] and have the form

Y (x) = \/(X —-x:)’ +12, (3.24)
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where ; is a constant which sets the flatness of the RBF. The control points were chosen

to be the grid points of the discretised space.

Since an approximation of the level set function ¢ can be defined by the coefficients a
according to (3.15), Wang and Wang [55] proposed to evolve ¢ by updating c. Under

the assumption that space and time are separable variables, (3.15) is rewritten as
o (x,t) =0T (x)ax(t) , (3.25)
with

\P(X):[wl(x) ey (x) 1 zoy Z}TE]R(NH)“. (3.26)

Inserting (3.25) into (3.12) and (3.16) yields

da

v (x) T — F(x,a) ](vm (x))Ta‘ =0 (3.27)
and
_éaz‘ (t)=0; éai (t)z; =0; _éai (t)yi =0; i:v:lozi (t)z =0, (3.28)

or, in matrix form:

do
HE —B(a)=0, (3.29)
with
B(a) = [ F (x1, @) ‘(V\Il (Xl))Ta o F(xy,a) |(VE (XN))Ta 000 0 g c RW+)x1

(3.30)

(3.29) is a system of N+4 ODEs which, when solved, allows updating a using e.g. an

Euler forward scheme:

at+1)=a()+AtH 'B(a(t)) . (3.31)

Note that H is a (N +4) x (N +4) matrix, thus its inversion requires a considerable
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amount of computing time and/or storage for large N. Wang and Wang [55] recom-
mended to use a fast evaluation method based on the FMM, such as in [5]. However,
this may be tedious to implement and may not improve the overall performance of the
algorithm sufficiently when dealing with very large data sets such as 4D data. Indeed,
Carr et al. [5] had to combine the FMM with a reduction of the number of control points

in order to ensure reasonable performance for very large data sets.

Variational Approaches — Some later works addressed the inversion issue of [55] by de-
riving new evolution equations for a using a variational approach. These new ODEs are
based on a gradient descent and do not require matrix inversion any more. They are

therefore more efficient to solve than (3.29).

Slabaugh et al. [45] used a small number of 2D anisotropic Gaussian RBF's, whose stan-
dard deviations, orientations, and positions of control points, as well as the number of
RBFs, are updated at the same time as the interpolation coefficients ae. They first ob-
tained a new ODE by deriving the variation of the Chan-Vese energy functional 7] with

regards to the interpolation coefficients and the parameters ¢ of the RBF's:

do = / FpcyydC', (3.32)

dt c
and

dCij i 8¢

T /C Fpc Do ac’, (3.33)
with

\V4
Fpo = (I(x) = cin)? = (I (X) = Cour)” + 7V (ﬁ) : (3.34)

i denotes the i* RBF, with i € {1..N} and N the total number of RBFs. j is the j™
parameter of the RBF. I is the intensity of the image, and ¢;, and c,,; are the mean
intensities inside and outside of the contour C respectively, as defined in [7]. Then, after
noting that Fpe is the classic level set speed of [7], they extended the obtained equations

to edge-based segmentation algorithms, by replacing Fpc by the classic geodesic flow.

As the contour and the RBFs’ positions evolve, some RBFs may need to be merged or
added. Two RBF's are merged when they are too close to each other, by replacing them
with an RBF having the sum of their respective properties and their average position.
On the contrary, one new RBF is added where the gradient of ¢ is too high, if no RBF
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is already nearby.

Bernard et al. [1] used B-spline RBF's with control points placed on a regular grid and
spaced by an integer h in all directions. They proposed to minimise a region-based

energy functional of the form

Eregc (6) = Vin / Fon (%, 6 (%)) H (6 (%)) + Vour / Fout (3,6 (x)) (1 — H (6 (x)) +

v, / £ (%6 (%)) 6 (6 (%) IV (6 (x))]]
(3.35)

with fin, fouwr and f. describing the object and background regions and the contour
respectively, and v;,, v, and v, the corresponding weighting coefficients, and H be-
ing equal to 1 inside the contour and 0 outside. The resulting update scheme for the

interpolation coefficients was:

d;:’ =Y Frge () 8" (% . xi> . (3.36)

Xj €zd

p" is the uniform symmetric B-spline of degree n. F,q ¢ is named feature function by
Bernard et al. [1] because it reflects the features of the object, and it is equal to:
Vo (x)

Frege () = (v (09 = v o () = i (1.0 o) ) 6 (6 x) - (337)

Note that both the original method of Wang and Wang [55] and these variational methods
use RBF's to perform segmentation, thus yielding a more numerically stable scheme, but
they do not provide interpolation. They are therefore not appropriate for segmenting
sparse data. The new RBF-interpolated level-set framework which will be proposed in
Chapter 4 will perform both segmentation and interpolation, and therefore will be able

to process sparse data.

3.3.3 Integrated Registration and Segmentation of Dense and
Overlapping 2D /3D Data

Yezzi et al. [62] proposed an integrated registration and segmentation method for two

overlapping and dense images or volumes, which motivated the new registration method
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which will be presented in Chapter 5 for sparse and partially intersecting data.

The algorithm of Yezzi et al. [62] simultaneously updates a level set contour, denoted as
C and C in the two overlapping images or volumes to be registered respectively, and ¢

a mapping between these contours such that C = g(C).

After noting that a region-based energy typically exhibits the form
ET@Q (C) = / fl’n (X) dx + fout (X) dx s (338)
Qin

where f;, and f,,; depend on the data, respectively inside and outside of the contour,
the authors derived the evolution equations (3.40)for the contour and g by minimising

an energy E,., (C, g):

By (©.9) = [ (Fut191 (Fu09)) Gxt [ (fua 1o (Fu09)) (),

out

(3.39)
ac Ll
= fN+|g]<fog>N—/{N (3.40a)
d9;

; 2 -1 T
2 Jo(Feg) (8 (@) 9N N) (3.40b)
where () is the scalar product and o is the function composition operator. g; is the "
component of g, |¢'| is the determinant of ¢’ the Jacobian matrix of g, N is the normal

to the contour and k its curvature, and f = f;, — f,u may be seen as speeds for the

contour.

If no constraint is imposed on the form of ¢, then g can be arbitrary between the
two contours C' and C. In the extreme case where g is the mapping between the two
contours prior to registration, the method would be equivalent to segmenting the two
images independently. Thus, this method requires some structure to be imposed on g,

and is well suited for rigid registration, where ¢g has the imposed form of:
g(x)=RMx+T, (3.41)

with R being a rotation matrix, M a scaling matrix and T a translation vector. Equation
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3.40 then becomes:

%: fN"'m(ng)N—/{N (3.42a)
aag; = Je (fog> <g—i,mRM*1N> , (3.42b)

with m the determinant of M.

Registration relies on segmentation results through the use of the level set contour C
and the segmentation speed f in (3.40b). This allows the method to demonstrate very
good results on overlapping 2D and 3D data, especially for rigid registration. However,
the method is limited to region-based segmentation algorithms and to two overlapping
images or full volumes, and can not process sparse data. Therefore, we will propose a
generalisation of this method to multiple and sparse, non-overlapping data, in Chapter
5.

3.4 Conclusion

In this chapter, we presented the current state-of-the-art of sparse and misaligned to-
mographic data analysis, with an emphasis on selected methods which we will compare
against in our experiments in Chapters 4, 5, and 6. We highlighted that sequential meth-
ods are not best suited to solve the inter-dependent issues of registration, segmentation,
and interpolation. However, the integration of these three stages has not so far been
achieved in a satisfactory way. Most of the existing works only attempt to combine two
of these stages, and they can not apply directly to sparse and misaligned data. The only
method known to date that integrates all stages is limited to one specific application,
i.e. heart modelling from cardiac cine MRI, and lacks flexibility for modelling both a
variety of objects and shapes that may have important variations. Thus, there is a need
for a method that integrates all three stages of registration, segmentation, and interpo-
lation, and that is flexible enough to model any shape, and from any modality. Chapters
4 and 5 will be devoted to the design of such a method, following the inspirations of the

previous and related works that we detailed in Section 3.3 of this chapter.



Chapter

ISISD: Integrated Segmentation and

Interpolation for Sparse Data

In this chapter, we introduce a new general-purpose segmentation and interpolation
framework for sparse data, which we refer to as ISISD. It extends the classical level
set method, described in Section 3.3.1, in order to handle sparse data by providing
interpolation of the object’s shape in the gaps in the data in addition to the usual level
set segmentation. Since segmentation and interpolation of such sparse data are two
closely intertwined problems (see the discussion on their interdependency in Chapter 1),

the strategy of ISISD is to integrate them into the same framework, for mutual benefit.

ISISD addresses the problems of data sparsity and varying spatial configurations, which
are common issues in object modelling, as highlighted in Chapter 1 and detailed in
Chapter 2. Specifically, in the case of medical images, it addresses the issue of thick and
widely spaced slices whose positions and orientations may vary greatly depending on
the imaging modality, patient, imaged organ, the pathology being investigated and the
preferences of the operator. This will be demonstrated in Section 4.5 and Chapter 6. As
will be illustrated in Appendix A, it also addresses the challenges of sparse and noisy data
produced by depth cameras and range sensors, notably low resolution and irregularly
spaced 3D point clouds, and holes such as those due to occlusions, low reflectance,

constraints on sensor placement, or missing views.

Another problem addressed by ISISD is the variation in gain and contrast which can

sometimes be found in the same dataset. A typical example is SA and LA slices in

44
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some cardiac MRIs, as was illustrated in Figs. 1.3a,b. It is also interesting to process
images from different modalities, like in Figs. 1.3c,d, in order to exploit simultaneously
the different information that they contain. In such cases, the traditional approach,
which consists of interpolating image intensities (see Section 3.1.1), cannot be directly

used.

4.1 Overview of ISISD

ISISD performs segmentation and interpolation simultaneously in order to let these two
processes benefit from each other. Notably, interpolation exploits segmentation results,
while 3D or 4D segmentation could not be performed without interpolation and would
be restricted to separate and independent 2D segmentations of the slices, that may be
mutually inconsistent. Contrary to the deformable model presented in Section 3.1.2,
ISISD integrates them into a level set framework in order to benefit from the high

flexibility and better computational efficiency of level set methods.

A key aspect of ISISD is that interpolation is performed on the level set’s implicit surface
which is segmenting the data and volume, rather than on image intensity, as is tradi-
tionally done in medical image analysis. Note that this approach is consistent with our
strategy of integrating segmentation and interpolation. To begin with, speeds are com-
puted for points of the implicit surface which have data support. Then, the remaining
parts of the surface, i.e. the parts which are in the gaps, are updated in order to yield
an appropriate interpolation of the shape of the object in the gaps. This is iterated until

convergence of the surface on the object’s boundary (see overview schematic in Fig. 4.1).

Compute contour speeds }‘1 h}';lg/

where data is available

{ Initial level set contour

L=

Compute contour speeds | | B
in data gaps i« Yes

A

I {=» Update contour ]——) Convergence?

Final level set contour

Figure 4.1: Overview of ISISD.

Interpolation is provided by a novel level set scheme based on the RBF interpolation of

the level set function. This new level set framework combines the two uses of RBFs which
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were presented in Section 3.3.2, namely interpolation and segmentation. It therefore
benefits from the two advantages of these methods. First, similarly to [1, 45, 55], it
yields a level set segmentation which is more robust to noise and more numerically
stable than a classical level set one. Second, it can handle sparse data inherently and it
automatically provides shape interpolation in the holes. Formulation of this novel level
set framework and illustration of its interpolation ability will be provided later in this

chapter.

Contrary to most image intensity interpolation methods which are restricted to stacks
of parallel images, our shape interpolation scheme does not require a specific spatial
configuration of the data. Hence, both sets of slices having arbitrary locations and

orientations, and even sets of unorganised 3D points, are inherently supported.

In addition, speeds for surface points which have data support may be computed using
any choice of segmentation algorithm. Both edge and region-based methods may be
used as well as prior knowledge. Therefore, ISISD is very general and may segment
various types of datasets, e.g. sets of medical image slices having various appearances by
choosing an appropriate segmentation algorithm which exploits all available information.
It is even possible to segment datasets from different modalities simultaneously by using
different speed computation algorithms for each modality, as will be demonstrated later

in this chapter.

In Section 4.2 we present the segmenting surface interpolation approach in more detail,
together with its motivations and benefits. We also propose an initial and simple frame-
work that implements this approach in an iterative way, and which is used to validate
it. Section 4.3 describes the formulation of the ISISD framework that implements our
approach in a more efficient and robust manner. Section 4.4 covers the main implemen-
tation aspects of ISISD, and evaluations of its interpolation properties are provided in
Section 4.5.

4.2 Interpolation of a Segmenting Surface and Initial

Implementation

In this section, we propose a new approach for the simultaneous segmentation and inter-

polation of sparse data. It extends the classical level set method to enable it to partition
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volumes that do not have a data support everywhere.

We also present a first framework that implements this approach by updating iteratively
and concurrently the segmentation and interpolation processes. This framework has the
advantage of being simply implemented and it will be used to validate our proposed
concept of performing segmentation and interpolation simultaneously by interpolating
the level set surface. A second framework that implements this concept in a more robust

way will be presented in the next section.

4.2.1 Formulation

We propose to make sense of sparse data by wnterpolating a level set implicit surface
where data is not available and during the segmentation process. Thus, we integrate seg-
mentation and interpolation in a level set framework and in a novel way. This approach

is a new contribution of this work.

Note that our proposed approach is similar to the method of Morigi and Sgallari [37],
who interpolate a level set implicit surface on sets of slices using level set morphing to
interpolate the surface between 2D contours which are grey-level lines of parallel images
(see more detailed description of their method in Section 3.1). However, this method
does not attempt to segment the data and is restricted to stacks of parallel slices. On
the other hand, our proposed approach integrates this interpolation into a segmentation
process. Therefore, for sets of slices, instead of interpolating every grey-level line, we
interpolate only the shape being segmented, which corresponds to a grey-level line in the

ideal segmentation case.

We first implement this segmenting level set surface interpolation approach by updating
iteratively and concurrently the two stages of data segmentation and surface interpo-
lation until convergence of both processes. We denote this framework as “concurrent
framework”. Its formulation is the following. As for a conventional level set method, we
compute speeds for the implicit surface at each iteration at the locations of points that
have data support, according to the chosen segmentation algorithm. Points located in
gaps between the image slices cannot be assigned a speed by the segmentation algorithm,
due to the lack of data. This is a limitation of the classical level set framework. How-
ever, in our proposed framework, we suggest to generate speeds for these points using an

interpolation algorithm (possible interpolation algorithms will be described later in this
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section). Then, these two types of speeds are used jointly to update the level set implicit
surface, until convergence. The algorithm of this concurrent framework is summarised in
Algorithm 4.1. In the next section, we will propose a second framework that provides a

more robust implementation of our level set segmenting surface interpolation approach.

1: Initialise a surface through a level set embedding function
2: repeat
3:  for all points with data support do
Compute speed according to the chosen segmentation method
end for
for all points without data support do
Compute speed according to the chosen shape interpolation method
end for
Update the level set function
10: until convergence

Algorithm 4.1: Integrated level set based segmentation and interpolation for
sparse data by concurrent segmentation and interpolation of the segmenting sur-
face.

Since we want to handle datasets of arbitrary spatial configurations, we should choose an
interpolation scheme for the level set implicit surface which is not restricted to parallel
slices, but can handle both sets of slices having arbitrary positions and orientations
and 3D point clouds. Possible and simple schemes are Mean Curvature Flow (MCF)
[9] and Surface Diffusion Flow (SDF) [10], that yield minimal surfaces and surfaces
having minimal curvature variations respectively. They ensure that the surface remains
continuous and smooth between fixed parts of the surface, i.e. parts which are in the
images’ planes or at the location of a 3D data point, and whose position is decided by

the segmentation stage.

4.2.2 Validation of our Level Set Segmenting Surface Interpo-
lation Approach

In order to prove our proposed concept of interpolation of a segmenting level set surface,
we tested our approach using our concurrent framework and the simple MCF and SDF
for interpolation, implemented using the semi-implicit schemes proposed in [47]. We
applied our method to both artificial images and cardiac MRIs, and in particular to

the datasets of Fig. 3.1 that the traditional sequential image interpolation followed by
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segmentation failed to handle. The results for these datasets are shown in Fig. 4.2.

(a) (b)

Figure 4.2: Integrated interpolation and segmentation, by MCF interpolation
of the segmenting surface, of (a) an artificial geometrical shape dataset and (b)
a real cardiac MRI, both made up of SA and LA slices having different gains
and contrasts. (b) left: central vertical slice of the volume viewed from the side,
right: central SA slice. Red: segmenting surface. Segmentation was done using
an edge-based segmentation algorithm [61].

A first benefit displayed by our segmenting surface interpolation approach is that the
issue of different gains and contrasts, reported in Section 3.1, does not arise when in-
terpolating the segmenting surface rather than image intensity, since no interpolation
artefacts are produced which could bias the segmentation. Thus, in Fig. 4.2, the same
edge-based segmentation algorithm as in Fig. 3.1 achieved satisfactory segmentations of
the volumes. 2D images having different gains and contrasts due to different modalities
may also be processed simultaneously, as in the two bottom rows of Fig. 4.4, where a
region-based segmentation algorithm was used with different intensity models for each

image in order to take into account their different appearances.

In addition, the problem of arbitrary spatial configuration is solved if the interpolation
scheme used to update the implicit surface in the gaps in the data does not make any
assumptions on the spatial configuration of the dataset. This is the case of the MCF and
SDF schemes used in our preliminary tests. Using these schemes, slices having arbitrary
positions and orientations could be processed, such as the SA and LA slices in the cardiac
MRI dataset of Fig. 4.2b.

A third advantage of our integrated approach is that segmentation and interpolation are
performed simultaneously and can therefore benefit from each other. To the best of our
knowledge, this is the first time that segmentation and interpolation are combined in a
level set framework. This integration is an important feature of our proposed method
since these two processes are closely intertwined, as was highlighted in Chapter 1. Thus,
in the tests of Fig. 4.2, interpolation succeeded through the use of segmentation results

rather than image intensity. At the same time, the segmenting surface could delineate the
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whole objects directly in 3D, even in the gaps between the images, thus obtaining more
coherent segmentations of the individual images. This benefit will be also illustrated by
more results in Section 4.5, notably in cases were the integrated approach performs more
robust interpolation than sequential image intensity interpolation followed by segmen-
tation, due to the interpolation stage using shape information from the segmentation

results.

4.2.3 Limitations of our Initial Framework

Our tests with our concurrent framework implemented with MCF and SDF validate our
proposition to integrate segmentation and interpolation in the same framework and our
approach to interpolate a segmenting surface rather than the images. However, the MCF
and SDF schemes used to update the surface in the gaps show some limitations. First,
the MCF method produces minimal surfaces between the intersections of the 3D implicit
surface with the image planes. Depending on the applications, such surfaces may not
be appropriate, as illustrated in Fig. 4.3. Indeed, Chopp and Sethian [9] showed that
a cylinder evolved under the MCF between two fixed rings becomes a catenoid if the
rings are close enough, and disappears if the distance between the rings is larger than a

maximum distance. This caused the numerous catenoid-like shapes in Fig. 4.3.

Therefore, it may be more suitable to take into account the global geometry of the object
in order to produce a better interpolation. Surfaces yielded by the SDF method tend to
be more visually satisfactory, but like MCF, SDF is also not easily scalable. In particular,
for large datasets and/or large gaps between the slices, many SDF iterations are required
at each segmentation iteration in order to successfully drive the implicit surface from one
side of the gap to the other. In addition, for bigger volumes or gaps, the method often
fails to propagate the implicit surface satisfactorily, as in Figs. 4.4c,d where it is not
interpolated smoothly in the gaps of a vertebra dataset, and in Figs. 4.4a,b,g where it
fails to propagate respectively between radial slices, and to the upper and lower parts of
brain ventricles which extend further up and down inside the skull, as shown by the raw
data of Figs. 4.4hi.

To sum up, the main limitation of our concurrent framework with diffusion flows is that
it can only provide a local interpolation of the level set surface between two image planes.
This motivates the development of a new implementation for our segmenting level set

surface interpolation approach, that would provide a more global interpolation of the
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level set surface.

(a) (b)

Figure 4.3: Limitations of interpolation by surface diffusion in gaps using an
MCF — the modelled object is the left ventricle cavity of a heart reconstructed
from an MRI dataset. (a) global view, (b) zoom of the highlighted part of (a).
Note that the MCF scheme produces catenoid-like shapes in (b).

4.3 RBF Interpolated Level Set

In this section, we address the limitations of our previous concurrent framework by
introducing a new implementation of our segmenting level set surface interpolation ap-
proach that yields a more robust interpolation for the segmenting level set surface. This
framework is based on the RBF interpolation of the level set function, and it provides
interpolation at the same time as segmentation by combining the two uses of RBFs that
were presented in Section 3.3.2, namely interpolation of sparse data and image segmenta-
tion respectively. It produces an intrinsic interpolation of a level set segmenting surface
without the drawbacks of the MCF or SDF methods that were highlighted in Section
4.2.3. We denote as ISISD this segmenting level set surface interpolation framework

implemented with our new RBF interpolated level set scheme.

4.3.1 Formulation

Let ¢(x) be a level set function and v;(x) an SPD RBF centred on a control point x;. ¢

may be interpolated as

P(x) = Z ihi(x) = Z a(x — x;), (4.1)
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(c) (d)

(f)

(h)

Figure 4.4: Limitations of interpolation by surface diffusion in gaps using an
SDF. First row: artificial geometric object modelled from a radial dataset: (a)
central horizontal slice of the volume — red: segmenting surface, (b) 3D view
of the reconstruction. Second row: vertebra modelled from a C'T-scan made up
of parallel slices: (c) reconstruction viewed from the front, and (d) zoom of the
highlighted part of (c). Last two rows: brain ventricles modelled from (e) T1
and (f) T2 parallel slice MRIs, with (g) reconstruction viewed from the side. The
brain dataset is shown in (h) from the side and (i) from the front, with parts
removed in order to allow a better visualisation of the ventricles, in purple. Note
that the SDF scheme fails to propagate the contour in particularly large gaps.
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where «; are weighting coefficients. The method proposed by [56] to evolve ¢ through
a=|o... aN]T involves inverting and storing an N x /N matrix, which may be very
time consuming and memory hungry when dealing with the large number N of points
which compose a 3D or 4D dataset. Instead, following the idea of [1, 45] who addressed
this inversion issue by deriving new ODEs using a variational method, we derive a new
evolution for e by minimising an energy functional F [¢] governing the segmentation of

the 3D/4D volume €, i.e.

E[¢] = /Q Flo(x)]dx = /Q F [Zaiw(x)] dx. (4.2)

F [¢] may be any functional and is defined by the chosen segmentation method. Conven-
tional variational level set methods derive an evolution equation for ¢ from (4.2) through

a gradient descent method as

96 _ OE OF

ETa X) = ~ 90 (x) = 90 (x). (4.3)

Using (4.1), (4.3), and the chain rule, a gradient descent method on (4.2) yields the

evolution equation for «; such that

doy, OE [ OF [ OF 0 N
&= e g A= | gr g dx= [ Z0 ()¢ (x) dx.
(4.4)

Let us rename %conv. (x) in (4.3) as S (x). S is the speed of the moving level set contour

C' (or surface in 3D), and it commonly contains a term based on the Dirac function

d (¢ (x)) that restricts is to the contour C' only. Therefore, we can simplify (4.4) into

do_ /C S (x) ¥ (x) dx ~ /Q 5. (6 (%)) S (%) ¥ (x) dx, (45)

where J. is an approximation of the Dirac function 6. The restriction of S to the contour
C' is necessary to ensure the stability of the method, i.e. if the object to be segmented is
small with respect to the size of the image, the speeds of the background points would
have an overwhelming effect in (4.4) — they would therefore occlude the influence of
the more important speeds of the points located on the object edges. Our experiments
showed that 6. should be larger with increasing flatness of the RBF in order to allow

the contour to converge smoothly without oscillating around the edges of the segmented
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object. In practice, we used

1+Cos<'"6—z)
55 (I) — 2e 7
0 |z| > €

jz| <e
(4.6)

with € = 1 for sharp RBFs and £ = 3 for flatter RBFs. Similarly to F, S depends on

the chosen segmentation method which may be any method of choice.

When segmenting sparse data, no data are available to compute a front’s speed in the
gaps, so S is set to zero there. Otherwise, S is computed for all images at their intersec-
tions with the contour, and the values of S are averaged when several images are present

at the same location.

RBF based interpolation methods usually define one control point per data point. In-
stead, we choose to define one control point per voxel of a discrete space, allowing (4.5)
to be re-written as a convolution which can then be computed efficiently using the Fast

Fourier Transform (FFT)!, as

da
dt

L= SE R Y6 (6(x) S (x) Y (xi = x) = (0 (¢) - ) x ) (i), (4.7)
C Q

where x is the convolution operator.

Note that the FFT assumes the signal to be periodic, and therefore, for non-periodic
dimensions of the data (i.e. the spatial dimensions in the case of medical images, plus
the temporal dimension in some cases), speeds S that are too close to an edge of the
volume may have a significant influence on the other side of the volume. Such effect
may bias the segmentation or create some artificial contours. In our experiments, this
rarely happened since the objects and their associated contour speeds S were generally
well centred in the volume and the edges were out of the influence area of the associated
RBFs. However, if necessary, the problem can be easily solved by adding an empty
border to the volume, that puts the volume’s edges out of reach of the RBFs that are

located at the positions of the contour speeds S.

'Tndeed, a convolution of two functions in the spatial domain is equal to the multiplication of their
Fourier transforms, that may be computed using the FFT.
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do;

o+ 1s then used to update a:

doa

t+1 — t dt .
o o+ 0t

(4.8)

This step implicitly updates the level set function since ¢ is defined completely by «
according to (4.1). In addition, (4.1) implies that:

8¢ N da; da
5 ()= > —i(x) = (E“/’) (x) . (4.9)

Note that this % (x) is different from the one calculated by conventional level set methods
in (4.3).

The initial a may be easily computed in the Fourier domain:

¢(x) = Z ah(x —x;) = (@x ) (x), (4.10)
3 = é w) . :
( )_1/3( ) (4.11)

where &, gg and @/AJ are the Fourier transforms of a, ¢ and v respectively, and w is the

frequency.

When evolving the level set implicit surface under both data terms Sy, and geometric
terms Sgeom Which only depend on the geometric properties of ¢, such as e.g. smoothing
terms, then only the data terms should be used in the computation of S and its derived
‘?)—f in (4.9), while the geometric terms should be used to update ¢ directly like in classical
level set frameworks. Indeed, the geometric terms do not depend on data availability and
can be computed everywhere in the volume, so they do not require any interpolation.
In addition, their convolutions by an RBF are not suitable since it may modify their
properties and degrade their performance. Therefore, when using such geometric terms,
we recommend updating the level set function using the following evolution equations

for ¢, which combine (4.7), (4.9), and the geometric terms:

9¢

7¢ (%) = (((0c(9) - Sdata) * ¥) x©) (%) + Sgeom (%) , (4.12)
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0
P =9t + dt—¢ . (4.13)
ot
Note however that smoothing terms, such as the traditional curvature term, were found
to be unnecessary in our experiments, thanks to the robustness to noise of the proposed

framework, which we describe next in Section 4.3.2.

Unlike conventional level set methods, the proposed evolution scheme for the RBF in-
terpolated level set does not use V¢ (see (4.7) and (4.8)). In addition, our experiments
showed that ¢ tends to remain a smooth function due to the smoothing effect of the
two convolutions by a decreasing RBF in (4.7) and (4.9). It is therefore unnecessary to
regularly normalise ¢ to maintain ||V¢|| = 1. Finally, it is not necessary to compute
an extended velocity for points which are not on the contour, as must be done with

conventional level sets, because only contour points are used in (4.7).

Initialise a contour C' through a level set function ¢ (x)
Compute the initial coefficients a using (4.10)
repeat
for all x on C' do
Compute S (x) according to the chosen segmentation method
end for
Compute “2—‘;‘ using (4.7)
Update o' using (4.8)
until convergence

Algorithm 4.2: RBF interpolated level set for integrated segmentation and
interpolation for sparse data

This new level set scheme is summarised in Algorithm 4.2. It should be noted that it
is different from [45] since it does not require adding, merging or removing RBFs, or
updating the properties of the RBFs and their position. It is also more general than
[1, 45] since any segmentation criteria, through the choice of F in (4.2), and any SPD
RBF, may be used, in any number of dimensions. In addition, it can inherently handle
sparse data and interpolate the shape of the object in gaps, while [1, 45] were designed
to segment dense data only. It should also be stressed that, even if the proposed method
looks similar to [5] which uses RBF interpolation to model objects from 3D point clouds,
it differs from it by its ability to segment both the volume which contains the data, and
the data itself.
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We also note that, similar to our concurrent framework of Section 4.2 with the MCF
and SDF schemes, this new framework can be used with any spatial configuration, since
Algorithm 4.2 does not make any assumption on the type and position of the data.
Notably, the data points do not need to be aligned on the grid of an image, and the
method could handle unorganised 3D point clouds, as will be demonstrated in Appendix
A. The difference in the processing of 3D point clouds and sets of 2D slices only arises
in the computation of the front speed S, which depends on the chosen segmentation
algorithm only. This choice is based on the type of data and the imaging modality, and

will be discussed in Section 4.4.4.

4.3.2 Benefits of the RBF Level Set Scheme

Robustness to noise — The RBF interpolated level set framework has the interesting
property of being very robust to noise in the speeds S, as illustrated in Fig. 4.5d (the
influence of the RBF flatness on the level of robustness to noise will be discussed later, in
Section 4.4.2). Classical level sets do not inherently handle noise, as shown in Figs. 4.5a,b,
and usually require a curvature term in their evolution equations in order to achieve a
result similar to Fig. 4.5d. This curvature term smooths the level set contour, and so it
tends to prevent it from segmenting sharp corners when the smoothing is too high. It
is unnecessary in our RBF interpolated level set scheme, since the robustness to noise
is due to the two consecutive Gaussian-like smoothings that (4.7) and (4.9) apply to S
in order to obtain % (rather than to the contour directly). Indeed, as can be seen in
Fig. 4.8g, when the speeds S produced by an object are in the minority with regards
to surrounding speeds, their influence in the computation of % becomes negligible, and
the object is ignored by the contour. Note that these smoothings do not prevent the
contour from segmenting sharp corners in Fig. 4.5d, as sometimes happens when using

a curvature term.

Interpolation — The main advantage of the new RBF interpolated scheme when pro-
cessing sparse data is that the segmenting contour is inherently interpolated in gaps
in the images or volumes, since, even where S is set to zero because of a lack of data
support, %—‘f is not null. This can be seen as interpolating the speed of the contour in the
gaps. Thus, this scheme implements our approach of interpolating a segmenting level
set contour or surface, that was proposed in Section 4.2. Fig. 4.6 illustrates the concept
with an example of an image with a gap being segmented. In Fig. 4.6b, one can assess

using (4.7) and (4.9) that 22 is respectively negative and positive at points A and C, and
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(a) o m (©) (d)

Figure 4.5: Robustness to noise in the segmentation speeds S: noisy image
segmented by the piecewise constant model used in [7] that produces noisy speeds
S, using (a) conventional narrow-band level set, (b) Chan-Vese level set scheme
[7], RBF interpolated level set with (c) a sharp RBF (y = 0.1, with v being
an RBF flatness parameter which will be defined in Section 4.4.1), and (d) a
flat RBF (v = 1). Initialisation: small circle at the centre of the image. The
piecewise constant model was used to compute %Com for (a) and (b) and S for

(c) and (d).

thus pushes the contour towards the edges of the object. It is also positive at point D,
pushing the contour towards the other side of the gap. At point B, the speed is negative

and prevents the contour from leaking elsewhere in the gap.

This inherent interpolation of the contour in gaps, without the need for an additional
interpolation stage such as the surface diffusion flows used in our concurrent framework
in Section 4.2, is a new contribution of this work. Indeed, the RBF interpolated level
set schemes of Wang and Wang [55], Slabaugh et al. [45], and Bernard et al. [1], do not

provide such interpolation, since they were designed for segmentation only.

4.4 Implementation

The new RBF interpolated level set scheme presented previously is a general scheme
which can use any SPD RBF and any segmentation algorithm. These choices should
be made by the user depending on the data, in order to accommodate data of arbitrary
types and appearances, and containing gaps of any sizes. In this section, we provide
implementation recommendations for choosing both the RBF and the segmentation al-

gorithm.
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(a) (b) (c)

Figure 4.6: Segmentation and interpolation on an image with a gap. (a) initial
contour, (b) speeds S (x) — green: positive; red: negative, (c) final segmentation.
Blue: level set contour.

4.4.1 Choice of RBF Type

An evolution scheme similar to that presented in Section 4.3.1 could be derived for

conditionally positive definite RBF, with the level set function approximated as

O(x) = p(x) + 3 cithi(x) (4.14)

where p is a polynomial which accounts for the linear and constant portions of ¢. How-
ever, in our experiments such functions yielded rather poor results, with over-smoothed
%—f and final ¢. Thus, only globally defined SPD RBFs would be recommended for
applications similar to ours.

We wish to emphasise the importance of the global support of the RBF. Even if the
segmentation stage could work with both compactly supported and globally defined
RBFs, the interpolation stage may fail where gaps are larger than their support. We
tested Gaussian RBFs and inverse multiquadric RBFs of the form v (x) = (||x[|” +~?) _g,
where 7 defines the shape of the RBF, and found that the flatness of the RBF has much
more influence on the segmentation and interpolation quality than its type. We observed
that the fast decay of the Gaussian function tends to make the evolution of the contour
very slow in gaps. Therefore, we chose to use inverse multiquadric RBF's, with 3 equal
to the number of dimensions of the data to ensure the decrease is not too steep. The

choice of v allows a finer tuning of the decrease rate.
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4.4.2 RBF Flatness: Influence on Segmentation and Interpola-

tion Results

The flatness of the RBF influences the quality of the segmentation and of the interpola-
tion, since, as illustrated in Fig. 4.7, different flatness rates will produce different weights
¥; (x) to the speeds S (x) in (4.7), thus modulating the extent of the influence of the
speeds S. The choice of RBF flatness, through the value of v, depends on the nature of
the data, e.g. its resolution (including in-plane resolution for images, and gap sizes) and
the size of details on the object. As a result, a given value for v may be particularly high
for one dataset and low for an other one. However, the same value for v can be used for

processing similar datasets, such as in our experiments in Section 4.5 (see Table 4.1).

(a) (b)

Figure 4.7: RBF flatness and extent of the influence of speeds S — 2D image
slices, seen from the side, with contour speeds in green (positive) and red (neg-
ative). A (a) sharp and (b) flat RBF, centred on a gap point (purple cross), is
superimposed in blue, with the horizontal axis being its value and the vertical
axis its spatial extent. Black: contour interpolated in the gap.

Robustness to noise — The level of robustness to noise in the speeds S can be adjusted
by setting the RBF flatness. Thus, in Figs. 4.5¢ and 4.11c, a sharp RBF provides very
little robustness to noise, while in Figs. 4.5d and 4.11d, a flatter RBF prevents the
segmentation from being impaired by the noise in S that is a consequence of the noise in
the image. This effect of the RBF flatness on the robustness to noise can be understood
by considering the example of Fig. 4.8, where a small hole is segmented when using
a sharp RBF in the first row, but is missed in the second row where a flat RBF is
used. Indeed, while the speeds S, shown in the second column, are negative inside the
hole in both cases, they do not contribute equally to the computation of % (third row)
because of their different weights 1; (x). In the case of a flat RBF, the influence of the

few negative terms are overwhelmed by the numerous positive ones. As a result, the
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segmenting contour ignores the small hole, and all other holes or objects which are too

small to produce significantly contributing speeds.

(d)

(h)

(i) () (k) (1)

Figure 4.8: Influence of the RBF flatness and of the initial position of the con-
tour on the segmentation of a small hole. From left to right: initial contour, zoom

on front speeds S (x) at an intermediate state — green: positive; red: negative,

zoom on % (x) at an intermediate state — light grey: positive; dark grey: neg-

ative, final segmentation. Top row: a sharp RBF (v = 0.1) segments the small
hole in the middle of the object, while, in the middle row, a flatter RBF' (v = 2)
treats the hole as noise and fails to delineate it. Bottom row: initialisation close
enough to the edges of the small hole allows the speeds produced by the hole’s
edges to prevail against speeds produced by the object’s points, resulting in the
hole being segmented even with a flat RBF (v = 2).

A drawback of this robustness to noise is that an overly flat RBF, together with inade-
quate initial conditions, may prevent small holes and small objects from being segmented,
as they would be treated as noise — see examples in Fig. 4.8h and Fig. 4.14e. In addition,
if the surface of the modelled object has some fine details, such as bumps which are
small in comparison to the gap sizes, then a particularly flat RBF results in a highly

smoothing segmenting contour that misses the fine details, as illustrated in Fig. 4.9b.

Interpolation — On the other hand, a too-sharp RBF would provide only local interpo-
lation, as illustrated in Fig. 4.7a, where only directly adjacent slices have an influence on

a gap. This would result, for example, in a ‘staircase-like’ shape in the case of parallel
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(a) (b)

Figure 4.9: Influence of the RBF flatness (via parameter ) on the smoothing of
surface details — the cavities of the left ventricle and atrium are segmented as one
object. (a) a relatively sharp RBF' (v = 2) captures the irregularities of the edge
of the modelled object, while (b) a flat RBF' (v = 6) smooths the segmentation
and produces a less detailed contour. This image is a central long-axis slice of a
CT-scan of the heart.

slices (Fig. 4.14b). On the contrary, a flatter RBF allows the influence of speeds at data
points to reach further into the gaps, as seen in Fig. 4.7b, and therefore provides a more

global interpolation of the shape of the object (black curve in Fig. 4.7b).

Some situations require particularly flat RBFs in order to obtain a global enough in-
terpolation. They arise for datasets containing large gaps, and/or slices that are at a
small angle to the object’s surface. This latter scenario is illustrated in Fig. 4.10 and
will be evaluated in experiments on kidney and heart CT-scans reported in Section 4.5.5.
In these two cases, a large v had to be used in order to obtain a smooth and globally

interpolated shape.

E:"i

Figure 4.10: Example of a dataset whose slices (black lines, seen from the side)
have a small angle (red) with the surface of the modelled object (blue), resulting
in a larger distance ab (yellow) between two neighbouring parts of the surface.
Hence, such situations require a high degree of smoothing in the gaps.

Segmentation energy — The robustness to noise and interpolation properties of our
new RBF interpolated level set, and their sensitivity to the RBF flatness, are the main

differences with a classical level set which would minimise the same segmentation energy
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(a) (b) (©) (d)

Figure 4.11: Influence of the RBF flatness on interpolation and robustness to
noise. Image with ‘slices’ of missing information (dashed areas) and noise being
processed by ISISD using (a) and (c) a sharp RBF (v = 0.1), and (b) and (d)
a flat RBF (y = 1). The piecewise constant model of [7] is used to compute S.
Initialisation: small circle at the centre of the image. The conventional narrow-
band level set and Chan-Vese level set schemes of Figs. 4.5a,b could not be used
with these incomplete images because they can not handle missing information.

(4.2). As explained in Section 4.3.2, they are due to the two consecutive smoothings
which are applied to the front speeds S in order to compute the evolution of the level

set function ¢, and which impact the way the segmentation energy is minimised.

This modification of the minimisation of the segmentation energy is illustrated in Figs. 4.12
and 4.13, which present the influence of the RBF flatness on the minimisation of the
segmentation energy in the case of noisy images and/or images with gaps. In these ex-
amples, the segmentation energy is computed in the case of a piecewise constant model
[7]: Epc = an (I —cin)* + fﬂm (I — Cou)’, where I denotes pixel intensity, €, and
Qo are respectively the interior and exterior of the contour, and ¢;, and ¢, are the

mean pixel values of the corresponding image areas.

When dealing with noisy images, sharp RBFs achieve the best segmentation energy
minimisation (red curve in Fig. 4.12), and produce a segmentation (Fig. 4.5¢) similar to
the result of the conventional narrow-band level set (Fig. 4.5a) which is very sensitive
to noise. A flatter RBF does not minimise the segmentation energy as efficiently (blue
curve in Fig. 4.12), however this allows it to better handle the noise, since noisy pixels

are now included into their correct regions (Fig. 4.5d).

When the image has gaps, a flat RBF also obtains a better interpolation (Fig. 4.11b) than
a sharp RBF, which does not manage to propagate the contour in the gaps (Fig. 4.11a).

The segmentation energy minimisation is therefore better (blue curve in Fig. 4.13a), since
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the segmenting contour can reach remote sides of gaps and segments the whole image.
If the image with gaps is also noisy, the minimisation of the segmentation energy using
a flat RBF is particularly non-optimal (blue curve in Fig. 4.13b), in order to both deal
with the noise in the speeds S and perform the interpolation, in addition to segmenting
the image. Note that in Fig. 4.13, the different steps in the red and blue curves are due
to the contour propagating slowly in the gaps. At these stages, the segmentation of the
image does not change significantly, and only the interpolation evolves. This evolution
of interpolation is not visible on these graphs since they show the minimisation of the

segmentation energy only.
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Figure 4.12: Influence of the RBF flatness on the minimisation of the segmen-
tation energy of a piecewise constant model on the noisy image of Figs. 4.5¢,d.
Black: original image (with no noise); red: sharp RBF (v = 0.1); blue: flat RBF
(v = 0.8). The energies are normalised with their respective maximum values in
order to allow comparison against the segmentation of the original image.

4.4.3 Choice of v and RBF Flatness

As discussed above, the flatness of the RBF 1, through the value of v, influences the
quality of the segmentation and of the interpolation. Its choice is highly dependent on
the nature of the data, i.e. on the level of robustness to noise required, the size of the

object and of the gaps, and the level of detail on the surface of the object — these can
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Figure 4.13: Influence of the RBF flatness on the minimisation of the seg-
mentation energy of a piecewise constant model on the images with gaps of (a)
Figs. 4.11a,b without noise and (b) the noisy images of Figs. 4.11c,d. Black:
original image (with no noise and no gaps); red: sharp RBF (v = 0.1); blue:
flat RBF (v = 0.8). The energies are normalised with their respective maximum
values in order to allow comparison against the segmentation of the original

image.
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not be automatically evaluated before the object is modelled and, at this point, can only
be assessed subjectively by the user from 3D visualisations of the data. Thus, its choice
would be extremely difficult to automate, and currently needs to be determined by the
user. However, as will be illustrated in our experiments, 7 needs to be roughly tuned
only, and the same value can generally be used for all datasets of the same type. In the
simplest cases, an appropriate value for v may be found easily which provides a trade-oft
between a suitable level of robustness to noise and a global enough interpolation. For
example, v = 1.5 was obtained empirically to model brain ventricles from five different
datasets acquired by two different MRI scanners at 1T and 1.5T in Section 4.5.6. In
other cases, we recommend two approaches, detailed below, which seek to provide a high
degree of smoothing in the gaps while preserving the segmentation quality. The first
approach preserves small objects and small holes which otherwise would be treated as
noise when using a large value for 7. The second also preserves small details on the

surface, e.g. small bumps, but at the expense of a slightly less satisfactory interpolation.

(a) (b) (c) (d) (e) (f)

Figure 4.14: Small object or hole preserving approach — the modelled object
is the LV cavity of the heart of Fig. 4.3 with one central short-axis slice in the
odd columns and 3D view in the even columns. Processing of a dataset in two
stages: (a) and (b) initial segmented and locally interpolated surface using a
sharp RBF (v = 0.7), and (c¢) and (d) final segmented and globally interpolated
surface using a flat RBF (v = 3), to be compared with (e) and (f) processing of
the dataset using a flat RBF (v = 3) only. The small object or hole preserving
approach ((a) to (d)) segments the papillary muscle inside the LV cavity, while
the simplest approach with a single flat RBF' (v = 3) ((e) and (f)) treats it as
noise.

To obtain smooth and globally interpolated shapes while preserving small
objects or holes — When a level set contour is initialised close to the edges of small ob-
jects or small holes, the speeds produced by these edges prevail against speeds produced
by non-edge points, as illustrated in Figs. 4.8j and 4.8k, and the contour is therefore
able to segment these small objects or holes, even when using a flat RBF (Fig. 4.81).
We generate such initialisations automatically by first processing the data with a low

value for v, which yields the required level of robustness to noise while preserving small
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objects and holes (Figs. 4.14a and 4.14b). This places the contour at the required initial
position, i.e. on the edges of the modelled object and of the smaller objects and holes,
e.g. as in Fig. 4.14a, with the LV cavity and the papillary muscle that is inside it. Then,
starting from the contour or surface just obtained, we process the data with a high value
of 7 in order to refine the interpolation (Figs. 4.14c and 4.14d). Note that in Fig. 4.14c,
the papillary muscle is still found, while it was not when the same value for v was used,
without preliminary segmentation, in Fig. 4.14e, and hence it was erroneously included in
the LV cavity. This approach was used to process all our cardiac MRI datasets in Section

4.5.6 with v being always set to 0.7 and 3 for the first and second steps respectively.

To preserve fine details on the surface at the expense of slightly less smooth
and globally interpolated shapes — To prevent fine surface details being lost when a
particularly high degree of smoothing in the gaps is required, we suggest the application
of several RBFs, each having a different flattening strength, in the same interpolation,

1.€.

o(x) = Z Z bl (x —x;), (4.15)

=1 x;€;

where 1! is the RBF of flatness level [ and €2; is the domain of the control points associated
with RBFs of flatness level [, such that (JQ; = Q and ©;, N Q;, = ) when [, # [,. These
1

domains should be chosen such that sharp RBFs are used at data points, while, in the
l

gaps, RBFs’ flatness increases progressively away from data points. «; is simply the
previous coefficient a; associated with the RBF ! centred at point x;. We use this
notation to establish that x; and a; are now associated with an RBF of a given flatness
level [. Equations 4.7 and 4.9 then become:

dal

o= (6:(6) - ) % ut) (x). (4.16)

with [; such that x; € €, and

0¢p B L dal
o (x) = ;x;h o PH(x —x;)
L daot
=> Y Hi(x) dtup’(x —x;) (4.17)
=1 x;€0Q
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with H; being equal to 1 inside {;, and 0 elsewhere. When using this surface-detail
preserving approach, the initial a can not be computed as easily as in (4.10). However,

it is easy to update ¢ directly using (4.16) and (4.17), without keeping track of .

Although the resulting shapes will have a much higher degree of smoothing in the gaps
than when using a sharp RBF only, they will be globally interpolated in the middle of
the gaps only, where v is highest, while the interpolation will be more local close to the
data. Hence, the resulting interpolation is usually less satisfactory than with the small

object or hole preserving approach.

Fig. 4.15 illustrates the ability of the two proposed approaches to process the extreme
case of sets of parallel slices having particularly large gaps and a small angle with the
modelled object’s surface, hence requiring an exceptionally high degree of smoothing
in the gaps. In Fig. 4.15a, the small object or hole preserving approach smooths out
the fine details on the surface of the modelled object, while in Fig. 4.15b the surface-
detail preserving approach is better at reconstructing them. On the other hand, in
the dataset of Fig. 4.15¢ only four slices were available and thus did not contain much
information on the fine details of the object’s surface. Therefore, the small object or hole
preserving approach could be used, with a very flat RBF (y = 12) at the second step,
without losing a significant amount of information. This approach obtained a better
interpolation than the surface-detail preserving approach (Fig. 4.15d) which produced a

more local interpolation close to the data.

(a) (b) (c) (d)

Figure 4.15: Segmentation and interpolation on a dataset with large gaps and
small angle between the images and the modelled object’s surface — the modelled
objects are the LV cavity of a heart from sets of parallel long-axis C'T-scan slices.
Gap size: (a) and (b) 15 pixels, (c) and (d) 20 pixels. Reconstruction by, (a)
and (c): the small object or hole preserving approach (v = 3 then (a)y =9, and
(c) v =12), and (b) and (d): the surface-detail preserving approach (v ranging
from 3 to (b) 12, and (d) 15).



4.4 Implementation 69

4.4.4 Choice of Segmentation Algorithm

The segmentation algorithm determines the computation of the speed S of the level
set implicit surface in Algorithm 4.2. Any segmentation algorithm may be used with
ISISD, since no constraint is set on the computation of S. This choice of segmentation
algorithm is dictated by the type of data and the imaging modality. Sets of 2D slices may
be segmented using a number of image segmentation algorithms, such as edge based and
region based methods, e.g. [6, 61] and [7, 23], as well as methods that use prior knowledge,
e.g. [15, 26, 67].

As mentioned earlier, our framework may also be used with other spatial configurations
such as 3D point clouds, since the interpolation of the level set segmenting surface does
not make any assumption on the location of the data points. For 3D point clouds with
surface orientation information (e.g. surface normals or line-of-sight), a region-based
algorithm may be used, similar to [58], which would assign the speed S (x) in (4.7)
depending on whether the point x is behind or in front of the surface of the modelled
object. Note that [58] is limited to dense point clouds while the intrinsic interpolation
capability of the proposed framework allows it to apply the same segmentation algorithm
to sparse point clouds. When there is no information on whether a point is inside
or outside of the modelled object, an edge-based method may be used, which would
attract the segmenting surface towards the 3D data points. A well known edge-based
method for image segmentation, which was used by [68] to segment 3D point clouds,
is Geodesic Active Contours [6]. The proposed framework could also use other, more
robust, edge-based methods, such as [61]. Possible segmentation algorithms, in the case
of medical image slices and RGB-D data, will be proposed in Section 4.5.1 and Appendix
A respectively.

One benefit of our segmenting level set surface interpolation approach, stated in Section
4.2.2, is that when a dataset contains images with different gains and contrasts, or
coming from different modalities, the speed S of the level set surface can be computed
independently for each image, using different segmentation algorithms, as in Fig. 4.4.

Then, the values in S for all images can be jointly used to update the level set surface,

dai
dt

will be provided later, for example in Section 4.5 where T1 and T2 weighted MRIs of a

by computing <%t in (4.7) in the case of ISISD. Other examples of the use of this approach

brain are processed simultaneously (see Fig. 4.24).

In our approach, the choice of segmentation algorithm is as crucial to the success of
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interpolation as for segmentation, since interpolation relies on the position of the level
set implicit surface in the volume, through the term S in (4.7) for ISISD. Thus, the
outcome of the interpolation stage and of the integrated framework relies heavily on
the choice of a robust segmentation algorithm by the user. It may be noted that, in
the case of sets of 2D images, the integration of interpolation and segmentation allows
using 3D or 4D segmentations rather than the less robust independent 2D segmentations.
Nevertheless, segmentation remains a difficult task, and is central to the success of the

integrated framework.

We note however that the failure of the segmentation in a part of the volume has only
an impact on the interpolation in the neighbourhood of this part, while in the rest of the
volume where the segmentation is satisfactory, the framework recovers quickly. This is
illustrated in Fig. 4.16 where the LV cavity of a heart has been segmented and inter-
polated from a set of slices after replacing a central horizontal slice by a wrong one to

simulate a failure in its segmentation.

(a) (b) (c)

Figure 4.16: Recovering after a local failure in the segmentation — the modelled
object is the LV cavity of a heart of Figs. 4.3 and 4.14. (a) dataset viewed from
the side — green: true slices; red: erroneous slice, (b) reconstructed object (same
view), and (c) original object.

4.4.5 Choice of Time Step

ISISD is very robust to numerical instabilities due to the use of an ODE rather than the
traditional level set’s PDE. In our experiments, no numerical instabilities arose, even for
very large time steps, and without using any renormalisation. We can therefore choose
the time step depending on the maximum number of voxels the implicit surface is allowed

to travel through in one iteration. At a given position, a level set interface moves by
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distance D, defined as

dt - 22 (x)
D(x) = ——2L 2 (4.18)

Ve (x|
If D is too large, the implicit surface may pass through small objects without seeing
them. In our experiments, we usually set D = 1 at the beginning of the process, which
is then reduced automatically and progressively when oscillations of the implicit surface
around the edges of the segmented object are detected. Lower D values allow the implicit

surface to stabilise on object edges and to segment them more accurately.

4.5 Evaluation of Interpolation on Medical Tomo-

graphic Data

In this section, we demonstrate the application of ISISD to the modelling of objects
from sparse sets of medical image slices which do not suffer from misalignment, and we
evaluate its performance at interpolating in gaps between the slices. We also show the
flexibility of ISISD by modelling objects having a large range of sizes and shapes, and

from various modalities.

We first propose, in Section 4.5.1, two examples of segmentation algorithms, which are
adapted to sets of medical slices while being simple and general enough to be applied
to the various medical imaging modalities which we use in our experiments. Then, we
present in Section 4.5.2 the evaluation protocol that will be used to assess the interpo-
lation quality of ISISD.

These evaluations are performed in Sections 4.5.3 to 4.5.6, with a focus on the handling
of arbitrary spatial configurations in Section 4.5.3, and on the accuracy and robustness
of the interpolation in Sections 4.5.4 to 4.5.6, on artificial and real data respectively.

Finally, some considerations on running time are discussed briefly in Section 4.5.8.

4.5.1 Segmentation Algorithm

We experimented with several segmentation algorithms, including the edge-based meth-

ods of [6, 61] and the region-based method of [7]. We selected two generic methods for
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our tests, based on their versatility, 7.e. their ability to handle the variety of our data,
and their simplicity and ease of use. Note that, although they yield acceptable segmen-
tations in most of our tests, better segmentation results may be obtained by adapting

the segmentation method to each type of dataset.

The first method is the piecewise constant (PC) model used in [7], which is intensity

based and drives the segmentation according to:
S (%) = (I (%) = cour)” = (I (x) = cin)” (4.19)

where [ (x) is the pixel intensity at point x, and ¢;, and ¢, are the mean intensities
inside and outside of the object respectively. This method was selected as the most
suitable segmentation approach for validation of our framework on artificial data made

up of piecewise constant regions (see a description of our artificial data in Section 2.2.1).

For validation on real data, a method similar to [30] is used, which is based on a piecewise
model and on a Parzen window method to estimate the distributions of image intensity

inside and outside of the object:
S (x) = log Py, (I (x)) —log Pyt (I (x)) . (4.20)

However, we did not use the contour smoothing and implicit function regularisation
of [30] because our proposed method tends to produce smooth contours and does not
require regularisation, as mentioned in Section 4.4.5. Also, we optimised the width of the
Parzen window using log-likelihood maximisation, while [30] sets it equal to the standard
deviations in the two regions. This algorithm was simple and generic enough to allow
processing various types of images, e.¢g. both MRIs and CT-scans, with various amounts

of noise.

4.5.2 Evaluation Protocol

This section is devoted to the evaluation of the interpolation quality of ISISD. We do not
evaluate the quality of the segmentation, since, as explained earlier, this quality largely
depends on the chosen segmentation algorithm, and this choice is highly dependent on
the nature of the data. Since ISISD is general enough to be used on data from a variety
of different modalities (e.g. MRIs and CT-scans as shown in our experiments), and can

accept any level set segmentation algorithm for the computation of the speed S of the
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level set implicit surface in (4.7), as outlined in Section 4.4.4, we do not recommend any
specific segmentation algorithm and let the user choose the most appropriate method
depending on their data. Therefore, the choice of an optimum segmentation algorithm

is beyond the scope of this work, and we only evaluate the quality of the interpolation.

In order to evaluate the quality of interpolation provided by ISISD, we compare with a
state-of-the-art interpolation method on both artificial and real medical data, and on a
variety of imaging modalities and imaged objects. Note that methods which integrate
segmentation and interpolation in a model based framework are not general enough to
allow processing shapes that have high variability, and we know of no other existing
work that integrates the whole process of segmentation and interpolation for 2D slices.
Therefore, we compare against the traditional sequential approach which performs inter-

polation and segmentation separately in turn.

As explained in Section 3.1, two sequential approaches exist: A) 2D segmentations of the
image slices, followed by interpolation of the surface from the obtained binary masks,
and B) interpolation of the images, followed by 3D segmentation of the obtained 3D
volume. The type B sequential approach is more popular in automatic sequential pro-
cessing of medical images, due to the more robust results produced by 3D segmentations
over independent 2D segmentations of the slices. In addition, a fair comparison of the
interpolation stage of the sequential and integrated approaches requires using the same
segmentation stage in both methods. The ISISD framework can only use 3D and 4D
segmentation by design, while sequential approach A is restricted to 2D independent
segmentations. Due to these reasons, we compare against version B of the sequential
approach, and we implement it with the state-of- the-art image interpolation method of
Cordero-Grande et al. [14], which was described in Section 3.2.2, and the same level set
segmentation method as in our ISISD framework. Hereafter, we refer to this sequential
method as SM+[14] for “Sequential Method implemented with [14]”).

For comparative evaluation against SM+[14], we measure accuracy on the 3D shape
of the segmented and interpolated objects (again because the proposed method cannot
separate segmentation from interpolation). For better parity, the segmentation algorithm
of our framework is used to segment the interpolated volume produced by Cordero-
Grande et al. [14]. We use the Jaccard similarity coeflicient as an accuracy measure of

the combined segmentation and interpolation. It measures the similarity between the
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recovered and the original volumes, and it is defined as

J— My,
My + Moy + My’

(4.21)

where M, is the number of voxels that are inside both the evaluated and the ground-
truth models, and My, and Mo are the number of voxels that are inside one model
and outside of the other. Note that other similarity measures may be used that would
emphasise different aspects of the results. For example, while the Jaccard measure is well
suited to compare the original and computed volumes, some other similarity measures
such as the Hausdorff distance would be better suited to evaluate the smoothness of the
reconstructed surface and its match with the original object’s surface. In our experiments
on artificial data of Section 4.5.4, the ground-truth is the model used to produce the
artificial data. In our experiments of Section 4.5.5, in order to assess the accuracy of the
interpolation on real data, we compare the reconstruction of the objects from the datasets
with gaps against the reconstructions from the original full volume datasets. The same
segmentation method is used in both cases to ensure that the segmentation results are
similar and that the comparisons only evaluate the accuracy of the interpolation. In the
experiments of Section 4.5.6, we perform subjective comparisons on the non-isotropic

real datasets.

We evaluate especially the ability of the methods to interpolate from data having var-
ious spatial configurations, i.e. slices having arbitrary positions and orientations. This
allows exploiting all available information without having to discard, for example, slices
of unsupported orientations. Also, particular attention is paid to the quality of the inter-
polation in cases where a high amount of smoothing is required in the gaps. This is the
case of gaps being comparatively too wide with respect to the size of the object and/or
of slice orientations which do not match the principal orientation of the imaged object,
as was illustrated in Fig. 4.10 and discussed in Section 4.4.2. Finally, we evaluate the
capability of interpolating a variety of shapes, which can allow reconstructing either var-
ious objects or objects having a high degree of shape variability, e.g. some pathological

organs such as brain ventricles of a patient suffering from hydrocephalus (see Fig. 4.24).

The values of v used by ISISD are given in Table 4.1. For the SM+[14] approach, the
image interpolation method of [14] was either ran and tuned by the authors of [14], or
was ran using their implementation and the default parameters provided by the authors.
Indeed, in this last case, it was found that modifying the method’s parameters did not

significantly change the results.
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Table 4.1: Values of parameter v used in the interpolation experiments

Experiment | Modelled object | Spatial configuration 7y
G tri del All 3
Artificial data | o O
LV models A and B All 0.5 then 4
Phantom Low Res. All 20
Phantom High Res. All 20
5 pixels spacing 3to7
. 10 pixels spacing 3to09
Real data Kidney . .
o 15 pixels spacing 3 then 9
(quantitative
evaluation) 20 pixels spacing 3 then 12
5 pixels spacing 3to7
LV cavity 10 pixels spacing 3t09
15 pixels spacing 3to 12
20 pixels spacing 3 then 12
Acetabulum All 9
Real data Vertebrae All 1.5
(qualitative Brain ventricles All 1.5
evaluation) LV cavity All 0.7 then 3

4.5.3 Robustness to Arbitrary Spatial Configurations

We first evaluate the ability of the methods to handle arbitrary spatial configurations,
1.e. slices having diverse positions and orientations. The configurations tested in Figs. 4.17
and 4.18 are axial and radial datasets ((a) and (c) respectively), and (b) stacks of horizon-
tal SA slices plus a few LA slices that have more complicated orientations and positions.

This latter spatial configuration is typical of cardiac MRIs.

Both Cordero-Grande et al. [14] and ISISD could process the axial datasets. However,
Cordero-Grande et al. [14] had to discard the LA slices of the SA+LA datasets, and
could not process the radial datasets at all, because it is limited to stacks of parallel
On the contrary, ISISD could inherently handle all three

spatial configurations, and exploited all available slices. This is due to the RBF based

and equally spaced slices.

interpolation scheme which does not require any specific spatial arrangement of the data
points. More examples of various spatial configurations will be presented in the next

experiments.
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SM[14]

ISISD

(a)

Figure 4.17: Robustness to arbitrary spatial configurations of artificial slices.
(a) Axial dataset — left: central vertical slice with segmenting contour in red, and
right: 3D view of the reconstruction. (b) SA+LA dataset — left: central vertical
slice, and right: 3D view. (c) radial dataset — left: central horizontal slice, and
right: 3D view. The datasets contain the models of Figs. 2.4a and 2.4c presented
in Section 2.2.1. The radial dataset could not be processed by [14] because this
method requires parallel and equally spaced slices.

(] Hl

%
) (a) (b) (©

Figure 4.18: Robustness to arbitrary spatial configurations of real slices. (a)
Axial dataset — left: central vertical slice with segmenting contour in red, and
right: 3D view of the reconstruction. (b) SA+LA dataset — left: central vertical
slice, and right: 3D view. (c) radial dataset — left: central horizontal slice, and
right: 3D view. The datasets are the MRI scan of a phantom and two cardiac
MRIs, which were presented in Section 2.2.2. The radial datasets could not be
processed by Cordero-Grande et al. [141] because this method requires parallel
and equally spaced slices.

4.5.4 Quantitative Evaluation of Accuracy on Artificial Data

The purpose of this experiment on artificial data is to assess the quality of interpo-
lation separately from that of the segmentation, since segmentation should be perfect

on the piecewise-constant images. It also establishes the limits of performance of the
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interpolation in the case of a perfect segmentation.

The geometrical object and LV models were modelled by SM+[14] and by ISISD from
the artificial datasets, starting from a small spherical surface located at the centre of the
volume, using the PC semgentation model described in Section 4.5.1. The geometrical
object datasets were processed by ISISD using a single value of 3 for , and the LV model
datasets were processed using the small object or hole preserving approach presented in
Section 4.4.3, with ~ being equal to 0.5 and 4 in the first and second steps respectively,
for all LV datasets. The image interpolation method of Cordero-Grande et al. [14]
was ran and tuned by the authors of [14]. They set parameter W; of their method to
0.5, to reflect the very little amount of “randomness” in the piecewise constant images.
Cordero-Grande et al. [14] could not process the LV datasets number 16 because their

slice spacing is not constant through all the volume.

Fig. 4.17 presents the segmented and interpolated surfaces of the radial and axial datasets
and of an example of a modified cardiac MRI, and all the results for the modified cardiac
MRIs are shown in Figs. 4.19 and 4.20. Table 4.2 provides the Jaccard coefficients

indicating the proportions of voxels correctly assigned to the objects.

Even when no attempt was made to tune v to match the individual spatial configurations
of the datasets, the ISISD framework yielded better results than SM+[14], with average
accuracy measures of 0.943 against 0.924. It obtained a more global interpolation of the
shape of the objects than Cordero-Grande et al. [14] on both the geometrical and LV
datasets using the same slices, i.e. SA slices only, especially at the apex of the LV, with
an average accuracy rate for the LV datasets with SA slices only of 0.935 against 0.923
for Cordero-Grande et al. [14]. The results were further improved by using all SA and
LA slices, yielding an average accuracy rate of 0.941. It can be seen from Figs. 4.19 and
4.20 that Cordero-Grande et al. [14] sometimes produces “stair-case” like shapes at the

apex of the two LV cavities, while ISISD reconstructs smoother and more global shapes.

For the proposed interpolation method, we identified two difficult types of surface areas
whose reconstructions most contributed in reducing the Jaccard accuracy measure. The
first type is the centres of gaps where the object’s surface has a sharp angle with the
image planes, as was illustrated in Fig. 4.10, and which requires a flat RBF in order
to compensate for the increased distance between the data points and obtain a global
and smooth interpolation. For example, this is the case for gaps near the apex of the
LV models and at the bottom of the hemisphere of the axial dataset. Note that very

large gaps would have the same effect, as will be illustrated in the next experiment. As
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Table 4.2: Jaccard Coefficients on Artificial 3D Data

Dataset | SM+[14] ISISD Dataset | SM+[14] ISISD
Axial 0.959 0.967 Radial - 0.984
LV model A SA SA SA+LA || LV model B SA SA SA+LA
1 0.947 0.952 0.963 1 0.937 0.940 0.946
2 0.947 0.957 0.961 2 0.936 0.933 0.943
3 0.935 0.951 0.951 3 0.939 0.936 0.937
4 0.947 0.952 0.958 4 0.937 0.940 0.942
) 0.950 0.951 0.960 ) 0.917 0.919 0.939
6 0.949 0.956  0.959 6 0.934 0.928  0.941
7 0.932 0.943 0.950 7 0.903 0.926 0.931
8 0.932 0.942  0.948 8 0.902 0.927  0.926
9 0.932 0.937 0.937 9 0.903 0.913 0.913
10 0.880 0.946 0.946 10 0.860 0.906 0.906
11 0.789 0.865 0.892 11 0.869 0.872 0.884
12 0.947 0.952 0.955 12 0.937 0.941 0.941
13 0.930 0.944 0.942 13 0.927 0.925 0.915
14 0.969 0.972 0.979 14 0.974 0.968 0.973
15 0.928 0.948  0.952 15 0.911 0.925  0.923
16 - - 0.956 16 - - 0.938
Average 0.928 0.944 0.951 Average 0.919 0.927 0.931
+0.043 +0.023 +0.018 +0.029 +0.021 =+0.020
Average Average
2 | s e sen | v oo

discussed in Sections 4.4.2 and 4.4.3, a tradeoff must be found in this case, between

a flat RBF which takes into account the global geometry of the object, and a sharper

RBF which better preserves the surface’s details. In this experiment, the small object

or hole preserving approach achieved this tradeoff satisfactorily for the LV models, thus

minimising the decrease of the Jaccard measure, and a high value for v could be used

with the axial dataset.

The second type is the disappearance of a structure between two slices where the pro-

posed method has no other choice than to guess the shape of the missing extremity. It
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Figure 4.19: Reconstruction of LV model A by SM+[14] and by ISISD, with
and without LA slices. The last dataset could not be processed by [14] because
its slices are not equally spaced.

does so by attempting to preserve the smoothness of the global shape, and therefore
produces plausible, yet possibly wrong, reconstructions. This is particularly true for
large gaps where the amount of missing information is high. Overall, we found that
the reduction of the Jaccard accuracy measures was due to the accumulation of several

small deviations from the ground-truth surface, scattered over all the surface and with
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Figure 4.20: Reconstruction of LV model B by SM+[14] and by ISISD, with
and without LA slices. The last dataset could not be processed by [14] because
its slices are not equally spaced.

a slightly higher concentration in these two types of difficult areas. Note that the ra-
dial dataset does not suffer from any of these difficulties, and achieved the best Jaccard

coefficient.
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4.5.5 Quantitative Evaluation of Accuracy on Real Data

ISISD was also quantitatively evaluated on our real datasets made from the quasi-
isotropic data from which a number of slices were removed, as described in Section 2.2.2.
In order to demonstrate the versatility of the proposed method, we performed these
tests on different objects having various shapes and sizes, and imaged using different
modalities. These are the two phantom MRIs and the kidney, LV and acetabulum CT-
scans. The segmentation algorithm based on pixel intensity classification using a Parzen

window estimator, described in Section 4.5.1, was used for both compared methods.

The LV and Kidney datasets required a particularly large amount of smoothing in the
gaps because of the combined effects of very large gaps and the unmatched orientations
of (all) parallel slices against the orientation of the organs, hence causing those slices
to have a small angle with the object surface. Therefore, they were reconstructed by
ISISD using the surface-detail preserving approach for the smaller gap sizes (5-15 and
5-10 pixels for the LV and Kidney datasets respectively) and the small object or hole
preserving approach for the larger gaps. v was tuned depending on the gap size, ranging
from 3 to 12, as shown in Table 4.1. The phantom and acetabulum datasets presented
smoother surfaces, therefore a simpler scheme was used for them, with a single value of
~ for all slice spacings. In these cases, v was only roughly adapted to the size of the
object and the level of detail of its shape, and was set to 9 for the acetabulum, and 20
for the two types of phantom. For the method of Cordero-Grande et al. [14], we used
the three default parameters provided by the authors, as we found that modifying them

did not significantly change the interpolation followed by segmentation results.

Table 4.3 provides the Jaccard coefficients for all of the datasets for SM+-[14] and ISISD
when the datasets were made up of parallel horizontal slices only (in the third and fourth
columns of the table), and parallel horizontal slices plus one vertical slice (in the last
column). Cordero-Grande et al. [14] could not be used in this last case, since it can not
handle the vertical slice. Fig. 4.21 shows the modelled shapes for the 5 pixels and 20

pixels spacing datasets.

Even when v was not finely tuned for all datasets, ISISD performed similarly or better
than SM+[14]. The segmentations of the slices, in the planes of the images, were sub-
jectively similarly good for the two compared methods for all slice spacings. However,
the interpolation by ISISD produced better results in the gaps between the images, es-

pecially for larger gaps, with average accuracy measures of 0.937 and 0.946 across all
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Table 4.3: Jaccard Coefficients on Real 3D Data

Dataset SPS;IC(-;Eg SM+[14] I51SD
(in pixels) Horz. Horz.+Vert.
) 0.970 0.989 0.990
Phantom 10 0.940 0.991 0.989
Low res. 15 0.923 0.978 0.987
20 0.863 0.962 0.977
D 0.993 0.992 0.990
Phantom 10 0.980 0.991 0.993
High res. 15 0.949 0.990 0.992
20 0.917 0.985 0.990
5 0.955 0.953 0.955
Kidney 10 0.895 0.887 0.900
15 0.840 0.845 0.869
20 0.771 0.802 0.846
3 0.966 0.962 0.962
IV 10 0.919 0.916 0.922
15 0.872 0.888 0.899
20 0.750 0.835 0.864
5 0.972 0.981 0.975
Acotabulum 10 0.948 0.968 0.968
15 0.892 0.929 0.935
20 0.881 0.903 0.915
5 0.9714+0.014 0.975+£0.017 0.974+0.016
Average of 10 0.936+0.032 0.951£0.047 0.954+0.041
all datasets 15 0.895+£0.043 0.926+0.061 0.936+0.054
20 0.836+0.072 0.897+0.079 0.918+0.065
all spacings | 0.910+£0.066 0.937+0.059 0.946+0.049

datasets and all spacings, for parallel horizontal slices and horizontal plus vertical slices
respectively. SM+[14] only managed a rate of 0.910 for parallel horizontal slices and was

inherently unable to use vertical slices due to the limitation of [14].
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Figure 4.21: Modelling of various shapes from real 3D data at two different
slice spacings (5 and 20 pixels respectively), and from a variety of modalities.
The blue circle highlights how Cordero-Grande et al. [14] struggles to reconstruct
extremities of objects for large slice spacings, especially where a background of
similar intensity can be confused with the object.

res.

SM-+[14]

5 pixels spacing
ISISD (horz.+vert.) ISISD (horz.)

SM-+[14]

20 pixels spacing
ISISD (horz.)

ISISD (horz.+vert.)
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Note that the addition of a single vertical slice increased the robustness of ISISD, espe-
cially in large gaps (right column of Table 4.3 and 3rd and 6th rows of Fig. 4.21), with

average accuracy rates across all five datasets of 0.897 to 0.918 for 20 pixel spacings,
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even if the position and orientation of the additional slice were not chosen to match the
position and orientation of the imaged object but instead were selected arbitrarily at the
centre of the volume. Recall, Cordero-Grande et al. [14]’s approach is inherently unable

to use LA images.

Cordero-Grande et al. [14] interpolates linearly between two neighbouring slices, thus
producing a local interpolation of the shape, while our proposed method can take into
account more than two slices, especially for large values of ~, and therefore it provides a
more global interpolation. This is illustrated in the 4th row of Fig. 4.21 where the results
of Cordero-Grande et al. [14] for 20 pixel spacing are made of straight segments because
of the linear and local properties of the interpolation, and yield accuracy rates ranging
from 0.750 to 0.917. On the contrary, in the 5th and last rows of Fig. 4.21, ISISD gave a
smooth and rather round shape, and accuracy rates of 0.802 to 0.985 and 0.846 to 0.990

respectively.

Cordero-Grande et al. [14] also struggled where the object disappears between two slices,
such as at the extremities of the phantom scans. This resulted in protrusions at these
positions. For example, their method confused the object with a background of simi-
lar intensity in the 20 pixel spacing Kidney dataset (see blue circle in the 4th row of

Fig. 4.21), which gave an accuracy rate of only 0.771.

Fig. 4.22 illustrates another example of shape detail extraction where, for the Kidney
dataset with 5 pixels spacing, we can see that the topology of the vessels recovered by
ISISD is much closer to the original volume than Cordero-Grande et al. [14]’s result,

which fused some of the vessels together.

(a) (b) (c)

Figure 4.22: Recovery of the topology of vessels from the Kidney dataset with
5 pixels spacing. (a) original dataset processed by (b) SM+/[14] and (c) ISISD.
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4.5.6 Qualitative Analysis on Real CT-scans and MRIs

In this experiment, vertebrae were segmented from CT-scans, and the ventricles of the
brain and the cavity of the LV were segmented from neonatal brain and cine MRIs

respectively.

Two vertebrae (Fig. 4.23) and five brain ventricles (Fig. 4.24) were segmented using the
Parzen estimator based segmentation algorithm. The datasets were visually inspected
for any visible misalignment as a pre-processing step and also considered not to require
much smoothing (unlike the data used in the previous experiment), because the gaps
were smaller and the slices were acquired roughly perpendicular to the principal axes of
the modelled objects. Therefore, the simplest scheme with a single value of v = 1.5 was
used for all the datasets of this experiment to provide a satisfactory trade-off between a

suitable level of robustness to noise and a sufficiently global interpolation.

(a) (b)

Figure 4.23: 3D segmentation and interpolation of the cl vertebrae of
Figs. 4.4c,d from a CT-scan. (a) global view, (b) zoomed view.

We did not compare against SM+[14] in this experiment, because their method requires
images spaced by at least twice their pixel size, which was not the case for the vertebrae
CT-scans, and it can not handle images from different modalities simultaneously, such
as the T1 and T2 images of the brain MRIs. On the contrary, the proposed method can
jointly process the T1 and T2 images, by applying different segmentation algorithms to

the computation of S for each modality, as suggested in Section 4.4.4.

Note that some methods perform multi-modal segmentation on brain MRIs with small
gaps by “stacking” the image slices on top of each other, ignoring the gaps. The drawback
of such methods is that they would discard any slice with a different orientation, such as
sagittal and coronal slices, if available. By preserving the original spacing between the

axial slices, our proposed framework can make use of these different slices. In Fig. 4.24,
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Figure 4.24: 3D segmentation and interpolation of the ventricles of the neonatal
brain of the two bottom rows of Fig. 4.4 from combined T1 and T2 MRI. Top
row: from left to right: T1 central slice, T2 central slice, axial 3D view, sagittal
3D view. Bottom row: with additional sagittal set of slices — left: central sagittal
slice, right: sagittal 3D view.

this allowed the use of an additional set of sagittal slices, which helped to segment a

feature which was missed when using the axial slices only.

Contrary to Figs. 4.4c,d where the SDF method did not interpolate the bone’s shape
in the gaps satisfactorily, because of its local approach, ISISD produced a much more
satisfactory global interpolation (Fig. 4.23). Similarly, in the two bottom rows of Fig. 4.4,
the SDF method failed to extend the contour to all the parts of the brain ventricles due
to the presence of large gaps in the data. In addition, the high degree of noise in the
brain MRI datasets biased its segmentation. ISISD did not suffer from these issues and
the segmenting contour reached all the parts of the brain’s ventricles (Fig. 4.24). The
segmentation was not impaired by the high level of noise, due to the inherent robustness

of ISISD to noise in S, as described earlier in Section 4.3.2.

We modelled the cavity of the LV (Fig. 4.25) from cardiac MRIs, after visual inspection
for no visible misalignment. The clear intensity separation between blood-pool and mus-
cle allowed using the simple PC segmentation model. The datasets required about the
same degree of smoothing as those of the vertebrae and neonatal brain, but the simplest
scheme with a single value for v failed to delineate the papillary muscles. Therefore,
we used the small object or hole preserving approach presented in Section 4.4.3, with
v = 0.7 and vy = 3 for the first segmentation of small details stage and the second inter-

polation refinement stage respectively, for all the datasets. The RBF of the latter stage
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was sharp enough to preserve the details on the surface of the modelled objects. The
image interpolation method of Cordero-Grande et al. [14] was ran and tuned by the au-
thors of [14]. The cardiac MRIs are made up of 25 time-frames, but only one time-frame
was used, as method [14] was designed for 3D segmentation and interpolation only. In

addition, Cordero-Grande et al. [14] used only SA slices from these sets and discarded

all LA slices.

SM-[14]

)
Q u
ISISD

Figure 4.25: 3D segmentation and interpolation of the LV cavity from three
different cardiac MRIs. The extraneous regions protruding from some LV cavities
for all methods in some images, e.g. orange circles, are parts of the right ventricle
which have been wrongly segmented by the chosen segmentation algorithm. The
blue circles highlight situations where ISISD recovered a better topology than
SM+[14].

When subjectively compared, we observe that the segmentations of the 2D images of
the cardiac datasets were similarly accurate for both methods, but the interpolation was
better using ISISD, as illustrated by the blue highlighting circle in Fig. 4.25. Notably,
the apex of the LV is better segmented and interpolated by ISISD than by SM+[14]
thanks to the use of the LA slices.

4.5.7 Modelling of 4D Real Data

An example of a 4D segmentation and interpolation performed by ISISD is shown in
Fig. 4.26. As in Section 4.5.6, we used the PC segmentation model to segment the LV
cavity from cardiac cine MRIs. This cannot be compared with SM+[14] since [14] does
not handle 4D data. Cordero-Grande et al. [14] can perform interpolation of the volume

in each time-frame, but not across the time domain in an interframe fashion.
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Figure 4.26: 4D segmentation and interpolation of the LV cavity from a cardiac
cine MRI: 6 different time-frames.

When processing 4D data, all time-frames are used simultaneously to update a 4D level
set surface. The time dimension is treated in the exact same way as the other spatial
dimensions, and in (4.7) the contour speeds S, weighted by 4D RBFs, are summed
across both the spatial and the time domains. Therefore, neighbouring time-frames
influence each other with weights (the RBF values) that decrease with distance in the
time domain. This ensures temporal consistency in the resulting dynamical shape. Note
that, in Section 4.3, FFTs were used to compute the convolutions of (4.7). As an
additional bonus, FFT’s inherent interpretation of periodic data allows us to exploit the
cyclical nature of cardiac motion, since the first and last time-frames of the cycle are

now neighbours as well?.

4.5.8 Timing

The SM+[14] and ISISD frameworks were implemented in C++ and the experiments
were run on a 1.6Ghz Linux machine. It is to be noted that timing comparisons against
SM+[14] mainly highlight differences in the interpolation times, since our implementation
of the level set framework was used for the segmentation stage of SM+[14]. Therefore,
as will be detailed next, the main differences arise from the additional interpolation step

of SM+[14], and varying numbers of iterations.

In the cases where the simple scheme with a single value for + could be used, ISISD
processed the data in about 5 to 15 minutes, depending on the size of the dataset.
SM+[14] was moderately slower by approximately 5 to 20 minutes, since the running

time of [14] had to be added to the segmentation time, and the segmentation itself (using

2Note that, as explained in Section 4.3.1, joint segmentation, interpolation, and tracking through
time from non-periodic signals may be done by padding the data with a number of blank frames in
order to limit the mutual influence of time-frames at the extremities of the signal. The extent of this
influence decreases with the chosen flatness of the RBF.
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the same segmentation framework as for ISISD) was slightly longer due to the higher

number of data points.

Conversely, when two values for v were used, due to the dataset requiring more interpo-
lation, the proposed method needed more iterations and time (30 minutes to 2 hours)
to process the data. Indeed, the second, interpolation refining step, required 4 to 10
times more iterations than the segmentation step in order to fully propagate the global
interpolation in the gaps and replace the existing local one. Note that these computation
times are still reasonable for the intended applications, which do not require real time
processing. SM+[14] performed in the exact same way as in the first case, with the
same number of data points and iterations required, and was therefore faster than the

proposed approach for this configuration.

Table 4.4 summarises these timing comparisons.

Table 4.4: Timing measures for ISISD and comparison against SM+[14]

Processing scheme for ISISD SM+[14] ISISD

Single v value 5 to 20 minutes 5 to 10 minutes

Small object or hole preserving

) 5 to 20 minutes | 30 minutes to 2 hours
approach with two v values

4.6 Conclusion

In this chapter, an integrated segmentation and interpolation framework was introduced
to reconstruct 3D and 4D objects from sparse datasets, based on the new concept of
interpolating a segmenting level set contour, and on a novel RBF interpolated level set
methodology. This new framework is general and can handle arbitrary spatial configu-

rations, i.e. sets of any number of 2D slices having arbitrary positions and orientations.

Its use in modelling from sparse but aligned medical tomographic data was demonstrated,
using two generic examples of segmentation algorithms. We evaluated the interpolation
abilities of our ISISD framework and compared them against a state-of-the-art sequential
method implemented with the image interpolation of Cordero-Grande et al. [14]. These
tests were performed on a variety of data, both artificial and real, from different modal-
ities, as well as on various shapes. Both 3D and periodic 4D shapes could be recovered,

due to ISISD inherently handling periodicity.
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ISISD proved to be very robust to noise and to large gaps, due to the interdependency of
the segmentation and interpolation processes. In particular, the interpolation provided
by ISISD was more robust to large gaps and to the object disappearing from consecutive
slices than the image interpolation of Cordero-Grande et al. [14], and yielded smoother

and more global shape interpolation.

Overall, ISISD was very flexible and could handle a great variety of shapes, spatial config-
urations, imaging modalities, and segmentation algorithms. Our proposed interpolation
of the segmenting surface, rather than image intensities as in other works, allowed simul-
taneous handling of arbitrary spatial configurations and different gains and contrasts,

such as images from different modalities, provided that they are aligned beforehand.

Note that correct registration of the data is of the utmost importance to provide coherent
information to ISISD. Such registration would be needed to process sets of misaligned

slices. The next chapter will address this registration issue.



Chapter

IReSISD: Integrated Registration,
Segmentation, and Interpolation for

Sparse Data

[ReSISD improves upon ISISD by incorporating rigid registration into the framework
described in the last chapter, in order to deal with any misalignments in the datasets.
This integration allows it to model objects from several sequences' simultaneously by

correcting any shifts or rotations caused by movements of the imaged object.

The inter-dependency of the three stages of registration, segmentation, and interpola-
tion, highlighted in Chapter 1, is taken into account by integrating all three stages in the
same framework. Thus, as in ISISD, interpolation exploits segmentation results while
segmentation benefits from the extra support provided by interpolation. In addition, in
this fully unified framework, registration can use segmentation and interpolation results
for better robustness, while providing the aligned data that segmentation and interpo-
lation require. This full integration of the three processes of registration, segmentation,
and interpolation allows handling sparse and misaligned data with an increased robust-
ness and accuracy for all three processes, as will be demonstrated in our experiments.
To the best of our knowledge, this is the first time that these three stages have been

integrated in a level set framework.

'Note that these sequences may equally be spatial or temporal sequences.

91
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In IReSISD we propose a novel registration algorithm to address the problem of arbitrary
spatial configuration of the data. Indeed, most image registration methods presented in
Chapter 3 apply to overlapping images or full volumes only. The registration method
of TReSISD can handle any spatial configurations, and especially sets of slices having
arbitrary number, positions, and orientations, as will be illustrated by our experiments
in Section 5.5. In Appendix A, we will demonstrate that it can also handle multiple 3D

point clouds.

The registration method of IReSISD also addresses the issue of data sparsity and limited
intersection between the sequences of a dataset, which was mentioned in Section 1 and
Chapter 3. Indeed, traditional registration techniques estimate the best match between
different sequences using raw data directly (see Section 3.1). However, in the case of
sparse data where the sequences have a limited number of intersections, computation
of these matching measures from raw data is more challenging and less reliable. By
integrating registration into the ISISD framework, IReSISD allows the registration stage
to exploit the shape information yielded by ISISD. Therefore, in cases with few intersec-
tions, the registration stage produces a better robustness than traditional registration

methods that are based on similarity measures.

5.1 Overview of IReSISD

The registration method of IReSISD is inspired by the work of Yezzi et al. [62] for
level set based registration and segmentation of two overlapping images or full volumes,
presented in Section 3.3.3. A level set contour and registration functions are updated
simultaneously. The contour is driven by image data towards the boundaries of the
object, while, at the same time, the images are driven towards the contour by the
registration. Thus, the sequences are progressively registered on a common frame which
is the model of the object, while the model is refined as the sequences reach positions
where they provide more coherent information to the segmenting level set contour. This
is iterated until convergence of the segmenting contour on the object’s boundary and of

the registration functions (see overview schematic in Fig. 5.1).

IReSISD benefits from the advantages of ISISD, so it can process datasets having arbi-
trary spatial configurations and from any modality through the choice of an appropriate
segmentation algorithm. Therefore, the registration method of IReSISD is more general

than [62] and 1) can use any segmentation method, 2) can register any number of im-
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Figure 5.1: Overview of IReSISD.

ages or volumes, 3) can register sparse data which do not span the whole volume, 4)
can register intersecting, non-overlapping images, and 5) can handle arbitrary spatial
configurations. In addition, the registration method of IReSISD is more robust to local
minima than the registration of [62] due to the use of global information on the geometry

of both the level set contour and the object in the images.

Next, in Section 5.2, we justify the validity of our adaptation of the method of Yezzi
et al. [62] to multiple sparse and non-overlapping sequences having arbitrary spatial
configurations. In Section 5.3, we present the formulation of our registration method
and its integration into ISISD. Implementation details are provided in Section 5.4. In
Section 5.5, we evaluate the quality of the registration and of the complete reconstruction
process of IReSISD and we compare them against the results of a state-of-the-art method,

i.e. a semi-sequential framework implemented with the registration of Lotjonen et al. [33]

followed by ISISD.

5.2 Justification

The registration method of Yezzi et al. [62], presented in Section 3.3.3, applies to two
dense and overlapping datasets only. However, we will show in this section that this
approach has physical grounds which we will use in Section 5.3 to derive a new and more

general registration method suited to multiple sparse and non-overlapping data.

Recall that [62] updates a segmenting contour according to (3.40a), while (3.40b) drives

the evolution of a registration function g which transforms the coordinate system of a
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target image into the coordinate system of a registered image, such that C = g (C), with

C and C being the contour in the registered and target images respectively.

Equation 3.40i makes the segmenting contour evolve under the sum of the contributions
of the two images being processed. Its generalisation to an arbitrary number of sparse
data having any spatial configuration was reached in Chapter 4, where, in (4.7), the
speed S of the level set contour was computed using all the images which intersect
it simultaneously. This resulted in the contour being evolved under the sum of the

contributions of all its intersecting images.

Let us analyse the effect of (3.40b) in the case of internal registration of misaligned
medical data. The misalignments between medical volumes, described in Chapter 2, are
due to movements of the patient between the acquisition of the different sequences, or
due to different volumes of air in the lungs. They can therefore be approximated by
rigid motions made of translations and rotations. Thus, we examine in more detail the
action of (3.42), the restriction of (3.40) to rigid alignment, in the case of translations

and rotations.

Translation - When aligning by translations only, (3.42b) becomes:

e /C<“f7 (Fog)N)., (5.1)

where () is the scalar product and o is the function composition operator. T; is the

i'" component of the alignment vector T, and u; is the unit vector oriented in the "

direction. ( fo g) (x) N (x) is the displacement imposed on the contour at point x by

the image being registered.

A physical interpretation of (5.1) is that T} evolves by the total displacement in the 4"

direction that the segmentation of the image being registered imposes on the contour.

Rotation - Let us consider the alignment by rotation around one axis only, for example

the z-axis, with the rotation matrix defined in the 3D case as

cosf) —sinf O
Ry=| sinf cosf 0 |. (5.2)
0 0 1
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Then, using trigonometric identities, (3.42b) becomes:

%:/C< gx,<fog>R9N>
:/C<R72r+9x, <fog> R9N> (5.3)
:/C<x, (fog) R_gN>.

Ry refers to the derivative of Ry with respect to 6.

This registration may also be seen as the effect of a physical force applied to the image.
Indeed, <X, (f o g) (x) R-zN (X)> may be seen as the torque of a force applied to the

contour at point x, directed tangentially, and with an intensity of < f o g) (x). The sum
of these torques along the contour C' makes it rotate towards a better alignment with

the image to be registered.

Thus, the action of these two types of alignment (translation and rotation) can be un-
derstood as having physical grounds and it would make sense to apply them to more
general cases than [62], such as different segmentation algorithms, and non-overlapping

images and sparse volumes.

5.3 Formulations

Adopting this idea, we propose to align by translation and rotation any number of
non-overlapping and intersecting sequences relative to each other, while segmenting an
object in the 3D or 4D volume that contains them, and interpolating its shape where
no data is available. We first generalise the formulation of [62], in Sections 5.3.1 and
5.3.2, to derive a new and more general registration method suited for multiple sparse
and non-overlapping data. Note that our formulation applies to sequences of any type,
both spatial and temporal. Then, in Section 5.3.3, we further improve our registration
method and increase its robustness to local minima. This new registration method for
sparse data suffering from local minima and cluttered background is a new contribution
of this work. Another contribution is its integration, together with the segmentation and

interpolation stages, into the same level set framework.
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5.3.1 Integrated Registration, Segmentation, and Interpolation

for Sparse Data

For each sequence n, we define a mapping function ¢" (x) = R"x + T" (where R =
R,R3R, is the 3D rotation matrix), which registers it with a common global reference.
As in Chapter 4, the evolution of the level set function ¢ is driven by all the images
that intersect the contour, through the use of their respective contour speeds S™ in the
computation of the total contour speed S. The evolution of the mapping functions ¢"
is given by our generalisation of Yezzi et al. [62]’s evolution equations for the case of

registration by translation and rotation:

( §— Z S" o g" (5.4a)
T 1
- _/ (5" g") (u;, R"N)
1 )
= F/ 5 (6) (5" 0 ") (w;, R"N)
n JQ,
= - P / (S™og") <RV"RB"RE+MX +T", RnN>
ot PuJonc ’ (5.4¢)
1 .
:F/s; 5€(¢)(Snog )<R,YnRﬂ’ﬂRg+a"X+Tn’RnN>
n 1
1 )
— 5 | 605" 00" (RpRypn Buox + T, B'N)
oy 1

= — (Sn o gn> <R£+7nRBnRanX -+ ’:[m7 RnN>
ot n JQ,NC :
" (5.4e)

P,
1
n JQ,

\

where €, is the domain of sequence n, P, is the number of points used in the sums for

sequence n and ¢, is the approximation of the Dirac function, which was defined in (4.6).

S™ is the speed imposed on the level set contour by the data of sequence n and it depends
on the chosen segmentation method. S is the total speed of the level set contour, and
is provided for equation (4.7) of the ISISD framework in order to compute the evolution
of the level set function ¢ both on the domains of the images and in the gaps between
them.

Note that Yezzi et al. [62] with rigid registration is a special case of (5.4), with two images
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or full volumes n; and ny, and Q,, = €,,. Also, while Yezzi et al. [62] designed their
method using a region based algorithm, the proposed registration method can be used
with any segmentation technique, the term S™ being a general speed for the contour,
similar to S in (4.7). The curvature term N in (3.40a) is dropped in (5.4a) because the
level set of ISISD does not require contour smoothing due to the intrinsic smoothing of
the convolutions by the RBF (see Chapter 4).

In medical imaging applications, all the images of a sequence are acquired in a single
measure (and breath hold if needed). The patient should be still during this short
acquisition time and we can reasonably assume that the images of the same sequence
(either spatial or temporal) are spatially aligned with each other. Thus, all the images
of the same sequence are treated as a rigid dataset and are moved in unison during
registration, and we sum the values at all images of sequence n in the integrals in (5.4). In
the case of 4D cardiac MRI made up of temporal sequences, the acquisitions of the time-
frames of different slice positions are synchronised by an electrocardiogram (see Section
2.1.1), therefore these time-frames can also be assumed to be temporally aligned. Thus,
to sum up, all the time-frames of one temporal sequence are considered to be mutually
spatially registered, and all images at a given time-frame and from different temporal

sequences are considered to be temporally (but not spatially) aligned.

5.3.2 Improvement of the Speed of Convergence

The registration algorithm converges more quickly if the amounts of translation and ro-
tation reflect the degree of misalignment of the associated sequence n with the rest of
the dataset. A large misalignment should result in a considerable amount of shift and
rotation of the sequence, while smaller, finer shifts and rotations should ensue from a
limited misalignment. However, contrary to that in [62], which uses dense and overlap-
ping data, this condition is not automatically fulfilled with intersecting sparse data. This
is because the intersection of the images of sequence n with images of other sequences
usually represents only a small portion of their pixels, and only a small part of the points

in the integrals in (5.4) belong to other intersecting sequences.

T
We solve this problem by modifying the norms of %ltn and aait (with@" = | om, B, "

being the vector of rotation angles that define R") according to an estimation of mis-
alignment A, which exploits the dissimilarity between the contour’s speeds S™ and S™,

where m # n, at intersection points between sequence n and all other sequences m, such
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that

‘Q(S"Og")x(smogm)<o N C‘

/\n: ;
192, NQ,, NC|

(5.5)

where €(gnogn)x(smogmy<o is the domain where images of sequence n and images of all
other sequences m produce speeds of opposite signs for the contour C, and |.| denotes

cardinality.

Simple piecewise linear schemes were found to be sufficient to obtain satisfactory conver-
gence speeds. We empirically established the following threshold values for A\, and their
associated amounts of transformation, which we applied in all our experiments to com-
pute the amount of shift and rotation for sequence n, in pixels and degrees respectively,

1.€.
1 A > 0.6

shift” = ¢ linear from 0.1 to 1 03< )\, <06 , (5.6)

rnm{hnearfrom()to()l }8TTLH} 0< A, <03

VD x a;? An > 0.6
rotation™ = { linear from /D X as2 to VD X a;2 02< M\, <06, (5.7)
min {hnear from 0 to v/ID X as?, ‘ 96" H} 0< A\, <0.2

with a; = 1° and as = 0.1° being angles of rotation around each axis, and D the number

of dimensions. The modified shift and rotation vectors are then

5!':\[1/71 8T" .
= ’ aTn” - shaft" | (5.8)
e | 80”” - rotation™ . (5.9)
Note that ‘ H only approximates the amount of rotation of R". However, its com-

putation is snnpler than finding the rotation axis and angle of rotation of R", and the

scheme in (5.7) and (5.9) was found to provide fast enough convergence.
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In order to avoid the modelled object drifting out of the boundaries of the volume, we

subtract an offset from the update of each component of ¢g", which is the minimum

displacement 8{;’5 . i absolute values amongst all sequences, i.e.
offset; = 99;" , (5.10)
' at mn
with ragf . such that:
dgr dgr
— = mi L\ 5.11
Ot min| || OF H (5.11)

This also restricts the translations and rotations to their minimal useful parts and hence
limits the amount of deformation that the level set contour must undergo at each iteration

in order to adapt to the displacements of the sequences.

Finally, T™ and R" are updated as:

Ty, = T} +dt (‘%l? - oﬁsetT> (512
O 5.12
or., = Or+dt (% _ oﬁsete) ,

T

T
with offsety = [ offsetr,, offsety, . offsety, } and offsety = [ offset,, offsetg, offset,

5.3.3 Robustness to Local Minima

In (5.4b) to (5.4e), only the points located on the level set contour are used to update the
position and orientation of a sequence. This implies that, before the contour converges on
the edges of the object, the global geometry of the object is unknown. This is illustrated
in Fig. 5.2b with the simple example of two 2D overlapping images. As a result, the
registration is more likely to get trapped in local minima, especially in cases of high initial
misalignments, such as in Fig. 5.2c where the level set contour is unable to continue its

growth because of the contradictory information provided by the different images.

We address this issue by using the speeds S both on the contour and in the domain
%, where (S0 g") X ¢ < 0. These additional speeds provide more information on the
global shape of the object, as illustrated in Fig. 5.2d. Therefore, we refer to this variant

of the proposed registration method as the “global variant”, as opposed to the previous
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Figure 5.2: Improvement of the robustness of registration to local minima
using global information on the geometry of the object — local variant (top row)
vs. global variant (bottom row) of the proposed registration method in the
simple case of two identical 2D overlapping images suffering from a significant
initial misalignment (left column, with initial segmenting contour superimposed
in yellow). Middle column: initial segmentation speeds S, displayed for the right
hand side image of the two overlapping images — red: negative speeds; green:
positive speeds. Right column: registration and segmentation results. Note that
the local variant is trapped in a local minimum, while the global variant is able
to use the extra information about the geometry of the object provided by the
segmentation speeds S to align the two images.

“local variant” which uses local information only.

Equations (5.4b) to (5.4e) then become

(% = & f(ﬂnmC)uQ; (5" 0 g") (uf, R"N)
b= w f(ﬂnmC)uQ; (5" 0g") (Ryn Rgn R yanx + T", R*N)
S = 7 f(QnmC)uQ; (8™ 0 g") (Ryn Ry 10 Ranx + T", R"N)

\ r f(QnmC)uQ; (5" 0 g") (Rzsmn RgnRonx + T R"N) .

(5.13)
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The estimation of misalignment )\, is changed accordingly into

‘Q(S"og”)x(smogm)<0 N (O U Q;lé U QZZ ) ‘

)\global —
Q,NQ, N (CuQruOn)|

(5.14)

Using the simple example of two 2D overlapping images, Fig. 5.2 illustrates how this
global approach can greatly reduce the number of local minima which may bias the
registration in the case of the local approach — which, in this 2D example with region-
based segmentation, is effectively the method of Yezzi et al. [62]. The global variant
of the registration method can exploit the geometry of the object before the level set
contour matches its shape, through the use of more segmentation speeds S™, as shown

in Fig. 5.2d, thus avoiding the method getting trapped in local minima in Fig. 5.2e.

5.3.4 Extended Velocities and Normals

The global variant of the registration method (5.13) computes S™ for all data points of the
contour C' and the domain Q7 rather than only on the contour as in (5.4). Therefore, an
extended velocity scheme needs to be used for the computation of S”. We implemented
a simple extended velocity scheme where S™ is computed everywhere in the same way

as on the contour.

In addition, the normal vector N is now used potentially in the whole volume rather than
just on the contour, thus we must ensure that N is directed pointing outwards from the
contour everywhere. This can be enforced by adding the classic level set normalisation
term to (4.9):

0 d
500 = (G 0 09+ st (60) (1~ Vo) (5,19
where « is the convolution operator.

Note that the normalisation term is used to update ¢ directly rather than being incor-
porated into S in (4.7), similarly to the geometric terms in (4.12). Indeed, this term
can also be defined everywhere in the volume and does not depend on the availability of
data, and therefore it does not require any interpolation. In addition, its smoothing by

convolutions with the RBF is not desirable and may degrade its performance.
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5.3.5 Complete Algorithm

As seen in Section 5.3.3 and illustrated in Fig. 5.2, the global variant is desirable in order
to avoid local minima when there is significant misalignment. However, our experiments
showed that the local variant is more robust to errors in the segmentation, such as
spurious false object pixels in the background. Indeed, these spurious points would be
used by the global variant and might bias its registration, while the local variant only
uses contour points and would ignore them. The local variant is therefore more accurate
and can take over when the deforming contour sufficiently matches the shape of the

object in order to achieve best local fitting.

Thus, we recommend to use a combination of the two global and local variants in order
to benefit from their complementary advantages. First, the global variant should be used
in order to get out of possible local minima for the local method. Then, when the level
set contour matches the shape of the object sufficiently well, thus indicating that the
registration is not stuck in a local minimum, the algorithm should switch to the local

variant. We use the following condition as a sufficient matching condition:

}Q(S"og")>0 ﬂ Q¢>0‘ > ‘QZJ . (516)

The overall algorithm for the IReSISD framework, which integrates the combined reg-
istration method and ISISD’s segmentation and interpolation, is outlined in Algorithm
5.1.

Note, as in Chapter 4, that the IReSISD framework is not limited to sets of slices but can
apply to more different spatial configurations, e.g. 3D point clouds. Indeed, similarly to
ISISD, the registration method of IReSISD makes no assumption on the location of the
data points in (5.4) and (5.13).

5.4 Implementation

In this section, we cover the main implementation aspects of the registration method
and the complete IReSISD framework.
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Initialize a contour C'
2: Initialize a boolean global to true if local minima are expected, false otherwise
repeat
4:  Compute contour speeds S using (5.4a)
if global = true then

6: Update C' using (4.7), (5.15) and (4.13)
else

8: Update C' using (4.7) and (4.8)
end if

10:  for all sequence n do
if global = true then

12: Compute 2" and %" using (5.13)
Estimate misalignment A, using (5.14)
14: if condition (5.16) = true then
Set global to false
16: end if
else
18: Compute 2" and 22° using (5.4b) to (5.4e)
Estimate misalignment A, using (5.5)
20: end if
Compute shift” and rotation™ using (5.6) and (5.7)
22: Compute 22 and 22- using (5.8) and (5.9)
end for

24:  for all degree of freedom ¢ do
Compute offset; using (5.10) and (5.11)
26: end for
for all sequence n do
28: Update T™ and R" using (5.12)
end for
30: until convergence

Algorithm 5.1: — Integrated Registration, Segmentation, and Interpolation for
Sparse Data

5.4.1 Choice of RBF

As in the ISISD framework, the flatness of the RBF has an influence on the segmentation
and interpolation results. The RBF flatness selection schemes proposed in Section 4.4.3
can also be used in the IReSISD framework in order to obtain a better segmentation and

interpolation.

Similarly, the flatness of the RBF has an impact on the registration results. Indeed,
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when the RBF is too sharp, the contour can sometimes fold around an image slice. This
is illustrated in Fig. 5.3, where the contour folded around particularly badly misaligned
slices (seen from the side in this figure) before they had time to move to better positions.
When such a slice has a strong misalignment, it may get trapped in a local minimum.
This problem can be solved by using a flatter RBF, which will yield a smoother contour,

as explained in Section 4.4.2.

Figure 5.3: Possible effect of a too sharp RBF on registration: contour folding
around individual slices prevents the slices from being properly registered.

Table 5.1 presents average registration errors obtained by the registration method of
IReSISD when aligning artificial heart datasets in the SA plane using two different RBF
flatness parameters. We see that the flat RBF (with v = 1) avoids contour folding traps,
and thus yields better results than the sharp RBF (with v = 0.5), with average errors of
(0.353, 0.331) pixels and (0.569, 0.466) pixels respectively.

Table 5.1: Influence of RBF flatness on registration accuracy of intersecting 2D
image slices (results are in pixels).

RBF flatness | Average mean and std of registration error
v=20.5 (0.569, 0.466)4(0.448, 0.237)
v=1 (0.353, 0.331)4(0.245, 0.202)

Note that the small object or hole preserving scheme proposed in Section 4.4.3 is also
suited for this application, since it uses a sharp RBF for a more accurate segmentation,
then a flat RBF for refining the interpolation, successively. In this case, both registration
and interpolation can be refined during the second step, with the flat RBF correcting
possible foldings of the contour. This scenario will be illustrated in our experiments in
Section 5.5.
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5.4.2 Choice of Segmentation Algorithm and Time Step

The discussion on the choice of segmentation algorithm of Section 4.4.4 remains valid
in the IReSISD framework. Thus, any segmentation algorithm may be used, provided
that it is adapted to the data being processed. It should be stressed that this choice of
algorithm impacts the registration stage in the same way that it impacts interpolation in
ISISD (and IReSISD), since registration also depends on segmentation results through
the terms S™ in (5.4) and (5.13).

In our implementation the same time step dt is used for updating both the registration
functions and the level set function. As in the ISISD framework, dt is set to 1 at the
beginning of the process and is reduced progressively when oscillations of the level set
contour are detected in order to allow a finer convergence of both the registration, and

the segmentation and interpolation.

5.4.3 Speed Selection

When registering cluttered images using the global variant of the registration method
and an intensity based segmentation algorithm, one must ensure that any background
objects which have similar intensities to the object of interest do not attract the contour
and bias the registration. Indeed, if the segmentation algorithm confuses a background
object with the object of interest when computing the extended velocities, then the
resulting spurious speeds S™ may greatly degrade the registration results when used in
(5.13). This is illustrated in the top row of Fig. 5.4, where the background speeds biased
the registration, leading to the level set contour segmenting the wrong objects. Thus,
in Fig. 5.4b, the SA slice was so much shifted by the registration using the speeds of
Fig. 5.4a that the RV contour segmented the LV, and the LV contour segmented part
of the background. In Fig. 5.4d, the segmentation of the LA slice was poor due to both
spurious speeds in Fig. 5.4c that biased the registration, and conflicting information from

the intersecting slices.

Therefore, it may be necessary to select the positive speeds S™ which are allowed to
be used in (5.13). In our implementation, this is enforced by simply setting to zero
any areas of positive speeds which are not connected to the interior of the level set
contour. This way, only the object being segmented can have positive speeds and drives

the registration, as in the bottom row of Fig. 5.4, where the two contours segmented
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(h)

Figure 5.4: Speed selection for preventing the effect of spurious speeds on
registration results. Global variant of the registration method using: top row:
all positive speeds in the images, bottom row: selected positive speeds. From
left to right: speeds and final segmentation for a central SA slice, and speeds
and final segmentation for an LA slice. Note that only speeds for the LV contour
are displayed. Speeds for the RV contour have similar properties. Green and
red: positive and negative speeds, respectively. Blue and yellow: LV and RV
segmenting contours, respectively. The purple circle highlights some remaining
spurious speeds that require the use of the local variant of the registration method
to be discarded.

the correct objects. As explained in Section 5.3.5, the accuracy of the registration and
segmentation can be further improved by the local variant of the registration method,
which would not use some remaining spurious positive speeds, such as that highlighted

by a purple circle in Fig. 5.4g.

Note that this technique requires the initial level set contour to be positioned inside the
object to be segmented. Alternatively, the user could be required to select one seed point
inside the object of interest on every images being used, and only the positive areas of

the speed maps which are connected to these seed points would be selected.
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5.5 Evaluation of Registration and Modelling on Med-

ical Tomographic Data

To assess and evaluate the IReSISD framework, we first concentrate on the accuracy
and robustness of the registration contribution of the proposed framework, and then we
assess the performance of the complete framework, integrating all stages of registration,
segmentation, and interpolation. As in our evaluations of the interpolation of ISISD in
Section 4.5, we do not evaluate the quality of the segmentation, and we do not recommend

any specific segmentation algorithm.

5.5.1 Evaluation Protocol

Previous registration methods, e.g. those presented in [19, 25, 51, 60, 62], are not suitable
for comparison, as they are designed to register dense images and can not handle several
intersecting 2D images in a 3D volume. The methods presented in [17, 46] are limited to
temporal sequences having the specific spatial configuration of one stack of parallel slices
intersecting two approximately orthogonal slices. In addition, the similarity measures
they use do not allow them to process multi-modal data. The integrated method of
Zambal et al. [64] is designed for modelling the heart from cardiac MRI, therefore it
cannot be used on our non-cardiac datasets. In addition, the authors informed us that
their code and prior (AAM and 3D shape) models were no longer available. Therefore,
we compare our registration method against the very popular NMI-based registration
approach, which was presented in Section 3.2.1, for two reasons: (a) it is commonly used
to register multi-modal medical images, and (b) we implement it using the algorithm
described in [33] for registration of sparse data made up of two orthogonal stacks of slices
(see Section 3.2.1). Lotjonen et al. [33] is the only method we know of that can handle
sparse data made of intersecting slices, and which can be applied to arbitrary spatial
configurations even if it was originally designed for two orthogonal stacks of parallel
slices. It performs in two iterative steps: first, one sequence is chosen randomly, and
second, it is shifted in the direction which increases its similarity measure with all of
its intersecting sequences. We initially set the shift step to 2 pixels, then decrease it
progressively to 1, 0.1, 0.01 and 0.001 pixels. This method was originally designed for
temporal sequences, but the same algorithm can be applied to spatial sequences in our
tests. Likewise, although in [33] the method is applied to translation only, it can also

be applied to rotation, and it is therefore suitable for comparison. We shall refer to our
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Table 5.2: Values of parameter v used in the registration experiments

Experiment Modelled object Spatial configuration y
o Brain ventricles model All 2
Artificial data
LV model A All 0.7 then 3
5 pixels spacing 3
Kidney 10 pixels spacing 4
15 pixels spacing )
Real d?ta. 20 pixels spacing 6
(quantitative _ .
evaluation) 5 pixels spacing 3
10 pixel i 5
Acetabulum PIXCTS Spaciie
15 pixels spacing 7
20 pixels spacing 9
Real data Brain ventricles All 1.5
(qualitative Hip joint All 1.5
evaluation) 4D LV cavity All 1 then 4

extended use of [33] as “SR[33]” where SR is for “Sequential Registration”.

IReSISD uses the integrated segmentation and interpolation method of ISISD. Therefore,
when assessing the performance of the complete framework, integrating all stages of reg-
istration, segmentation, and interpolation, for fairness we compare against the sequential
approach which successively applies NMI based registration and the integrated segmenta-
tion and interpolation method of ISISD. We refer to this framework as “SR[33]4+ISISD”,
or for brevity “SR+ISI”, where ISI is for “Integrated Segmentation and Interpolation”.
We also use the same segmentation algorithm for the two compared methods: the PC
model from [7] for our artificial data made up of piecewise constant regions, and the
Parzen based method for real data. “SR+4ISI” and IReSISD also use the same values of

v, which are summarised in Table 5.2.

The registration method of IReSISD is evaluated quantitatively as the registration error
of artificially misaligned datasets. Artificial initial misalignments are induced in a dataset
by initialising the registration vectors T™ and 8" of its individual sequences to random
values. Then, after registration, we compute the registration error as the average and
standard deviation of the distances of the individual sequences to their mean translation
T and mean rotation angles 6, since a perfect registration should move all the sequences

to the same position.
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The complete framework is assessed by computing Jaccard coefficients® of the shapes
reconstructed from the initial misalignments by both the SR+ISI framework and IRe-
SISD. The recovered shape is first aligned with the original model shape using the mean

registration transformation of the sequences of the associated dataset.

In our experiments, we distinguish between two cases:

e Spatial sequences, as in Figs. 2.1a and 2.1b, where all the slices of a sequence move
together and no spatial deformation happens within the sequence. In the rest of

this chapter, we will denote such registration as “stack-wise” registration.

e Temporal sequences made up of a number of time-frames of a single slice position
and orientation, as in Fig. 2.1c. In this case, the different slices which span the
volume are registered with each other. We denote such registration as “slice-wise”

registration.

5.5.2 Quantitative Evaluation of Accuracy on Artificial Data

We evaluate the IReSISD framework on the artificial brain and cardiac datasets. As brain
and cardiac MRIs are usually made up of spatial and temporal sequences respectively,
the artificial brain datasets are used to evaluate the “stack-wise” registration, and the

artificial cardiac datasets are for the “slice-wise” registration.

For both the SR[33] and the proposed registration methods, the interpolation and seg-
mentation for the artificial brain datasets are performed using a single value of 2 for ~.
The artificial heart datasets are processed in two steps using the small object or hole
preserving approach proposed in Section 4.4.3. The RBF flatness parameter 7 is set to
0.7 and 3 for the two steps respectively, as in the experiments on real cardiac MRIs in
Section 4.5.6. This is necessary to obtain a detailed segmentation and smooth interpo-
lation. In IReSISD, this also allows correcting any possible foldings of the segmenting
contour around the image slices (see Section 5.4.1) during the second processing step.
For both the brain and cardiac datasets, the initial level set surface is a small sphere

placed at the centre of the volume to be registered.

Registration Error

2See Section 4.5.2 for a definition of the Jaccard coefficient.
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Stack-wise registration — Table 5.3 shows registration errors, in pixels and degrees, for
stack-wise registration, averaged on all 9 artificial brain datasets. In the first row, the
sequences are initially randomly shifted by up to 10 pixels in all directions and randomly
rotated by up to 10° along all axes, so ’fi?”: rand [—10, 10] and QA[‘: rand [—10°, 10°] (with
67 the i'" component of "), where ~ indicates the initial value of the registration vectors.
In the second row, we have 7/}’\1: rand [—20, 20] and 0:”: rand [—20°,20°]. In the first test,
the SR[33] method is slightly more accurate than the proposed registration method, but
both methods achieve sub-pixel and sub-degree accuracy, with average errors on all
datasets of (0.02, 0.05, 0.08) pixels for vectors T™ and (0.05°, 0.08°, 0.05°) for vectors 6"
for the SR[33] method, against (0.05, 0.08, 0.09) pixels and (0.27°, 0.35°, 0.22°) for the
proposed registration method.

For more considerable initial misalignments, such as in the second test where TZ‘ =
rand [—20,20] and 7= rand [—20°, 20°], the overall performance of the SR[33] method
is lower than the proposed registration method, with average errors of (0.74, 2.61, 1.99)
pixels and (2.15°, 4.70°, 2.14°). This is due to the SR[33] method being sometimes
trapped in local minima, as illustrated on the top row of Fig. 5.5, where two different
ventricles of the brain are confused as one single object and superimposed. Conversely,
the proposed registration method exploits information on the global shape of the objects
that are contained in the sequences, and therefore is more robust to such local minima.
As a result, it maintains a good accuracy, with average errors similar to the first test of
(0.05, 0.08, 0.07) pixels and (0.34°, 0.40°, 0.22°).

Table 5.3: Stack-wise registration accuracy on artificial 3D data: mean and
standard deviation of registration error (in pixels and degrees for translations
and rotations respectively), averaged over all 9 artificial brain datasets.

Initial misalignment SR[33] Proposed
T; = rand [~10,10] i(1(.g£i: 912233?2?32-3) i(ég-%?’G(.)%(e)fé,O;gg-S)
i =rand 10007 |G SR | ey daes e
Toormnd 20,20 |55 0 0 | e s e
i) | E AT | e b e

Slice-wise registration — Table 5.4 presents the registration errors for slice-wise regis-
tration, averaged on all 14 artificial cardiac datasets. In the first two rows, the initial
misalignements are in the SA plane, with f\gy: rand [—5, 5] and YE: rand [—10, 10] re-

spectively, and @ =0 and (92‘ = 0°, and the images are registered by translation in the



5.5 Evaluation of Registration and Modelling 111

(a) (b)

Figure 5.5: Registration results on two artificial brain datasets which have
local minima. Top row: the SR[33] method got trapped in the local minimum,
while, bottom row: the proposed registration method achieved a satisfactory
registration. (a) dataset 1, viewed from a top-front-left position. (b) dataset 2,
viewed from the front (left) and the side (right). Colours correspond to different
sequences: red: sagittal, blue and green: axial. Note that in the bottom row, the
two axial sequences are nearly perfectly aligned, so only one colour is seen for
them. For visualisation purposes, only pixels containing the object are displayed.

SA plane only. This is motivated by the fact that real cardiac MRIs acquired during
a breath hold at end-expiration tend to suffer mainly from shifts in the SA plane, due
to small amounts of air remaining in the lungs, and have negligible shifts along the LA
direction and rotations. For the first test, while both methods achieve sub-pixel accu-
racy, the proposed method obtains results that are more precise than the SR[33] method,
with average registration errors of (0.36, 0.39) pixels for (77,7}') against (0.64, 0.77)
pixels for the SR[33] method. The second test is an quite extreme case, with shifts of
up to 10 pixels, equivalent to around 20 mm given the image resolution. However, the
performance of the proposed registration method remains similar to that of the first test
with smaller initial misalignments, with an average error of (0.36, 0.37) pixels. On the
other hand, the accuracy of the SR[33] method is strongly degraded to an average error
of (1.87, 1.99) pixels.
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In the last two rows of Table 5.4, we shift the slices in all directions, with fﬁy =
rand [—5, 5] and T7'= rand [—3, 3] in the third row, and 77 = rand [-10, 10] and T =
rand [—4,4] in the fourth row. At the same time, we also rotate the slices with 0 =
rand [—5°,5°]. Although the registration protocol of [33] is designed for registration by
translation only, the same protocol can also be used with both translation and rotation.
Again, the two methods achieve a similar accuracy in the third row, with the proposed
registration method being slightly more accurate than the SR[33] method, with average
registration errors of (1.05, 0.78, 0.95) pixels and (3.1°, 2.97°, 2.65°), and (1.29, 1.51,
2.02) pixels and (3.23°, 2.96°, 3.2°) respectively. In the fourth row, the proposed regis-
tration method maintains a good accuracy, with average errors of (1.2, 1.15, 1.13) pixels
and (3.12°, 2.52°, 2.79°), while the average errors of the SR[33] method are higher at
(2.8, 2.5, 2.08) pixels and (3.05°, 2.95°, 2.97°).

Table 5.4: Slice-wise registration accuracy on artificial 3D data: mean and
standard deviation of registration error (in pixels and degrees for translations
and rotations respectively), averaged over all 14 artificial heart datasets.

Initial misalignment SR[33] Proposed
T7 = rand 5, 5] (0.64, 0.77)=(0.65, 0.87)  (0.36, 0.39)=(0.42, 0.2)
7 = rand [~ 10, 10] (1.87, 1.99)£(3.72, 6.11)  (0.36, 0.37)=(0.44, 0.18)
T rand 5,5 (1.29, 1.51, 2.02) (1.05, 0.78, 0.95)
a +(1.36, 2.16, 2.54) +(1.12, 0.68, 0.56)
Tp=rand[-3, 3] (3.23°, 2.96°, 3.2°) (3.1°, 2.97°, 2.65°)
0= rand [-5°, 5% +£(0.09, 0.1, 0.09) £(0.09, 0.09, 0.07)
T rand [~10, 10] (2.8, 2.5, 2.08) (1.2, 1.15, 1.13)
- +(4.6, 3.93, 1.96) +(3.65, 1.86, 0.78)
Tp=rand [—4,4] (3.05°, 2.95°, 2.97°) (3.12°, 2.52°, 2.79°)
0= rand [-5°, 5% +(0.08, 0.06, 0.07) £(0.09, 0.09, 0.07)

This difference of results on the artificial cardiac datasets may be explained by the fact
that the SR[33] method uses the intensity at the intersections of images to compute
the NMI, and therefore requires a minimum number of intersection points in order to
obtain meaningful similarity measures. Indeed, in [33] the datasets were made up of two
stacks of 6 and 8 parallel SA and LA slices respectively, both spanning the whole left
ventricle of the heart. On the contrary, the proposed registration method is still even
in the presence of a low number of intersection points between the different sequences
(e.g. 2 or 3 LA slices), thanks to its use of global segmentation results rather than local
pixel intensity. Therefore, it can handle datasets where the LA slices are less numerous
and cross the imaged object at various angles and locations, such as the datasets that

we use in our experiments.
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A difficulty, which sometimes arises when an image intersects very few other images,
is that a position ambiguity can happen, as illustrated in Fig. 5.6, where two different
positions can be viewed as equally correct. Such under-constrained situations happened
a few times during our slice-wise registration tests, and a few datasets had one or two
of their slices caught in a local minimum, at an ambiguous position, especially in the
third and fourth tests. This was the case of LA slices suffering from a particularly high
misalignment which places them on the opposite side of the rather symmetrical object,
or of slices being moved to this position by the small, early stage segmentation contour,

before its shape matches the shape of the object.

<« B

Figure 5.6: Ambiguity in the registration of a slice due to insufficient con-
straints, i.e. too few intersections with other slices.

This last scenario could be avoided by first inhibiting rotations and translations both out
of the plane of the image and out of the SA plane. Then, when the shape of the contour
was judged reliable enough, rotation and translation in all directions were authorised.
In our implementation this condition is reached when the image and the majority of its

intersecting images achieve condition (5.16).

The first ambiguity scenario, with slices suffering from an exceptionally high initial
misalignment, can not be avoided since the correct registration of these slices is not
known beforehand. This resulted in a wider distribution of the slices around their mean
position in these datasets, which explains the large average standard deviations presented
in Table 5.4. Most of the time, this did not prevent the contour to recover the proper
shape of the object, as both ambiguous positions were acceptable in a topological point

of view, as will be illustrated next.
Complete Framework

Table 5.5 shows the Jaccard coefficients averaged on all datasets for all tests and both
methods.
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Table 5.5: Mean Jaccard coeflicients obtained on artificial 3D data.

Test SR-+ISI | IReSISD
Stack-wise 1 0.963 0.957
Stack-wise 2 0.848 0.962
Slice-wise 1 0.889 0.911
Slice-wise 2 0.817 0.910
Slice-wise 3 0.778 0.859
Slice-wise 4 0.667 0.847

Stack-wise registration — In the first test with small misalignments (ﬁ = rand [—10, 10],
9?-1 = rand [—10°,10°]), both methods recover the shape of the brain model satisfacto-
rily, with mean Jaccard coefficients of 0.963 and 0.957 respectively. For larger initial
misalignments, the SR[33] method sometimes falls into local minima, as was illustrated
in Fig. 5.5 and discussed during the previous evaluations of registration. In such cases,
the resulting reconstructed shapes, shown in Fig. 5.7b, suffer from the contradictory in-
formation provided by the misaligned sequences, and as a result the Jaccard coefficient
averaged on all datasets is decreased to 0.848. On the contrary, the registration of IRe-
SISD is more robust to such local minima and therefore maintains the same accuracy,
and IReSISD recovers satisfactory shapes (Fig. 5.7¢) with a mean Jaccard coefficient of
0.962.

Slice-wise registration — The IReSISD framework recovers better shapes than the SR+ISI
in all four tests, due to its more accurate registration. In particular, it is not impaired by
larger initial misalignments in the second and fourth tests (with J/fy = rand [—10, 10]),
and yields mean Jaccard coefficients of 0.910 and 0.847 respectively, similar to those of
the first (0.911) and third (0.859) tests with smaller misalignments ('_f/’g = rand [—5, 5]
in these cases). In addition, in tests 3 and 4, the more significant number of degrees of
freedom (3 translations and 3 rotations) makes the registration problem less constrained
than in tests 1 and 2 and causes some slices to have several acceptable positions, as was
discussed previously when evaluating registration and illustrated in Fig. 5.6. However,
the IReSISD framework recovers quite accurate shapes even in such cases, as shown in
Fig. 5.8¢c, with average Jaccard coefficients of 0.859 and 0.847 respectively. Indeed, it
manages to place the slices in positions which make them contribute to the overall shape
of the object while limiting any conflicts with other slices. The SR+ISI method however,
attempts to align the slices without taking into account the global shape of the object,
and therefore yields poor registration and shape recovery in such cases, as illustrated in

Fig. 5.8b, with average Jaccard coefficients of 0.778 and 0.667 respectively.
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(a) (b)

Figure 5.7: Shape reconstructed from the two datasets of Fig. 5.5 with local
registration minima. (a) original shape, (b) reconstruction by SR+ISI, (c) re-
construction by IReSISD. Top row: dataset 1, view from the top. Bottom row:
dataset 2, view from a front-right position.

()

5.5.3 Quantitative Evaluation of Accuracy on Real Data

In this experiment we show that IReSISD is not limited to images consisting of piecewise
constant regions, but can also deal with real images from a variety of modalities that
may exhibit large variations in appearance and various levels of noise. We evaluate the
quality of registration and of shape reconstruction on the kidney and acetabulum datasets
described in Section 2.2.2, using the Parzen estimator based segmentation algorithm
described in Section 4.5.1.

The RBF flatness coefficient ~ is set to 3, 4, 5 and 6 for the kidney datasets, and to 3, 5,
7 and 9 for the acetabulum datasets, in both cases for data with 5, 10, 15 and 20 pixels
spacings respectively. The speed selection strategy presented in Section 5.4.3 is used to
segment the kidney datasets because they contain several objects of similar intensities

which, otherwise, would bias the intensity based segmentation algorithm.
Registration Error

Stack-wise registration — We perform two tests with 7/};: rand [—10, 10] and 9/? = rand [—10°, 10°],
and TZL: rand [—30, 30] and 9:”: rand [—20°, 20°] respectively. In the first test, only a
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(a) (b) (c)

Figure 5.8: Shape reconstruction from an artificial cardiac dataset containing
slices with ambiguous poses. (a) original dataset before artificial misalignment
of test 3, dataset processed (b) by SR+ISI, and (c) by IReSISD. Top row: slices
of the dataset. Note that only one LA (vertical) slice is available, hence the
numerous ambiguities in the pose of the SA slices. Bottom row: reconstructed
3D shape. IReSISD attempted to recover a globally smooth shape for the object,
therefore it reconstructed a more plausible and accurate shape than SR+ISI.

small Region of Interest (ROI) around the object of interest is used by both methods in
order to avoid possible local minima where background objects and the object of interest
have similar intensities. This allows testing the accuracy of both methods. In the second
test, the entire images are used, in order to evaluate the robustness to local minima.

Table 5.6 presents the average registration errors sorted by slice spacings.

The results show the same trend as the corresponding experiments on artificial data. For
small initial misalignments and slice spacings, both methods generally achieve sub-pixel
and sub-degree accuracy, with an average registration error for the first test of (0.03,
0.14, 0.19) pixels and (0.84°, 0.12°, 0.49°) for the SR[33] method, against (0.05, 0.1,
0.14) pixels and (0.4°, 0.13°, 0.33°) for the proposed registration method. However, for
larger spacings or misalignments, the SR[33] method falls into local minima, especially
when the image contains several objects of similar intensities, as illustrated in Fig. 5.9a.
Therefore, it only achieves an average error of (2.94, 4.9, 7.58) pixels and (3.37°, 1.04°,
3.03°) in the second test. The proposed registration method avoids such issues, due to

its global approach. It yields satisfactory registration for all our datasets except one,
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Table 5.6: Stack-wise registration accuracy on real 3D data: mean registration
error (in pixels and degrees for translations and rotations respectively), averaged
over all datasets for each test.

Initial mis- Slice

. . SR[33] Proposed
alignment spacing
5 pixels (0,0,0.11) (0.01, 0.01, 0.12)
e (0.01°, 0.001°, 0.001°) (0.02°, 0.02°, 0.02°)
S = 10 viel (0,0, 0.11) (0.01, 0.06, 0.13)
S g PIXES 1 (0.0020, 0.001°, 0.001°) (0.06°, 0.09°, 0.1°)
LT 5 il | (0001, 0.001, 0.11) (0.09, 0.05, 0.08)
= P (0.01°, 0.003°, 0.001°) (0.11°, 0.16°, 0.1°)
=B 20 pixels (0.11, 0.56, 0.42) (0.08, 0.28, 0.25)
é@(g!@ P (3.33°, 0.47°, 1.95°) (1.39°, 0.26°, 1.09°)
® Average (0.03, 0.14, 0.19) (0.05, 0.1, 0.14)
8¢ 1 (0.84°, 0.12°, 0.49°) | (0.4°, 0.13°, 0.33°)
5 pixels (0.001, 0.004, 0.12) (0.03, 0.03, 0.14)
. (0.02°, 0.004°, 0.003°) (0.09°, 0.04°, 0.11°)
2= 10 oiels | (0001, 0.002, 0.11) (0.05, 0.07, 0.16)
Sz P (0.01°, 0.001°, 0.003°) (0.1°, 0.08°, 0.02°)
iy 15 vixel (8.66, 12.04, 5.15) (0.91, 5.88, 1.17)
T PIXES 1 (5,300, 1.14°, 4.07°) (4.67°, 0.26°, 8.15°)
8 8 20 niels (3.08, 7.54, 24.95) (0.3, 0.69, 0.85)
éﬁ(g!@ P (8.07°, 3.02°, 8.04°) (0.32°, 0.41°, 0.49°)
= Average | (294, 4.9, 7.58) (0.32, 1.67, 0.58)
8¢ | (3.37°, 1.04°, 3.03°) (1.3°, 0.2°, 2.2°)

which contains an object with a rather symmetrical shape (Fig. 5.9b). This symmetry
causes an ambiguity on the poses of the sequences, similar to the ambiguities discussed
in Section 5.5.2. Thus, the method achieves a poor registration for this dataset, with
errors of (1.76, 11.75, 2.16) pixels and (9.25°, 0.23°, 16.23°), but the recovered shape is
acceptable, as shown in Fig. 5.9e. This case increases the overall error of the proposed
registration method in test 2 to (0.32, 1.67, 0.58) pixels and (1.3°, 0.2°, 2.2°).
discount it, the error for test 2 becomes (0.08, 0.34, 0.49) pixels and (0.41°, 0.23°, 0.35°),

which is similar to the results of the first test.

If we

Slice-wise registration — We shift all the slices of a dataset independently in the (x,y)-
directions by a random amount bounded by the slice spacing of the dataset: TEy =
rand [—SP, SP] with SP the slice spacing, and 77 = 0 and 67" = 0°. Registration results
are presented in Table 5.7.

This test is different to the slice-wise registration tests of Section 5.5.2 with artificial data,
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(b)

(c) (d) (e)

Figure 5.9: Registration and shape reconstruction from a kidney dataset made
up of two spatial sequences containing large (15 pixels) gaps, and suffering from
a severe initial misalignment. Top row: registration result — for visualisation
purposes, only one central slice of each sequence is displayed. (a) SR[33] method,
(b) proposed registration method. The orange circles highlight a failure of the
SR[33] method to match together two cross-sections of the kidney, due to a
confusion with background objects. Bottom row: reconstructed shape — (c)
original shape, (d) SR+ISI, (e) IReSISD.

since in Section 5.5.2 the datasets were made up of one stack plus a varying small number
of roughly orthogonal slices having arbitrary positions and orientations, whilst here the
datasets are composed of two orthogonal stacks of parallel slices. This spacial configu-
ration contains more intersections between the slices and is the configuration for which
the method in [33] was originally designed. Therefore, both SR[33] and the proposed
registration method perform similarly well for slice spacings and initial misalignments of

up to 15 pixels, and achieve sub-pixel accuracy.

In the last test, with 20 pixel spacings and maximum misalignments, the SR[33] method
encounters local minima problems when objects of the background are confused with
the object of interest. At the same time, the number of intersection points becomes
less suitable to compute similarity measures. As a result, its average registration error

increases to (4.22, 3.45) pixels. The proposed registration method does not suffer from
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these problems and results in an error of (0.48, 0.84) pixels, similar to the errors of the

three other tests.

Table 5.7: Slice-wise registration accuracy on real 3D data: mean and standard
deviation of registration error (in pixels), averaged over all datasets for each test.

Slice spacing

& shift max SR[33] Proposed
5 pixels (0.34, 0.54)£(0.22, 0.70) | (0.12, 0.20)=(0.01, 0.03)
10 pixels (0.34, 0.92)£(0.14, 3.58) | (0.17, 0.35)%(0.02, 0.06)
15 pixels (0.27, 0.27)£(0.02, 0.02) | (0.26, 0.77)=(0.13, 0.71)

20 pixels (4.22, 3.45)+(27.84, 27.25) | (0.48, 0.84)+(0.19, 0.56)
Average | (1.29, 1.30)=+(7.05, 7.89) | (0.26, 0.54)+(0.09, 0.34)

Complete Framework

The ground-truth shapes used to compute the Jaccard coefficients are the shapes recov-
ered by level set segmentation of the original, full volume datasets. The Jaccard coeffi-
cients for both methods, averaged on all datasets for each test, are presented in Table
5.8. When the registration yielded by the SR4+ISI and IReSISD are similarly accurate, as
in the first stack-wise registration test, both frameworks reconstruct satisfactory shapes,

with mean Jaccard coefficients of 0.937 and 0.942 respectively.
Table 5.8: Mean Jaccard coefficients yielded on real 3D data.

Test SR-+ISI | IReSISD
Serie-wise 1 0.937 0.942
Serie-wise 2 0.721 0.929

Slice-wise 0.882 0.934

However, when the SR[33] method falls into local minima because it confuses background
objects with the object of interest, as in Fig. 5.9a, the two sequences which make the
dataset provide incoherent information to the segmenting level set surface. As a result,
the level set attempts to segment the object at two different locations, obtaining a
Jaccard coefficient of 0.118 in the case of Fig. 5.9d, which decreases the mean Jaccard

coefficient for the second stack-wise registration test to 0.721.

IReSISD does not suffer from this problem. As explained previously, the proposed reg-
istration method was trapped in a local minimum in the case of Fig. 5.9, caused by the
symmetry of the object. However, the method takes into account the global shape of the
object when aligning the images, and attempts to reduce the discrepancy in the segmen-

tation information that they provide. Therefore, in such cases, the proposed framework
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still recovers a plausible shape, as illustrated in Fig. 5.9e, where it obtained a Jaccard
coefficient of 0.832. Thus, the mean Jaccard coefficient for the second stack-wise regis-
tration test remains high at 0.929, similar to the first stack-wise registration test with

smaller initial misalignments.

Similarly, in the slice-wise registration test, the SR[33] method encountered local min-
ima problems for the largest initial misalignments, and the reconstructions of the full
framework suffer from the resulting badly aligned sequences, with an average Jaccard
measure of only 0.882. On the contrary, the greater robustness of the proposed registra-
tion method to local minima offered a better support to the shape reconstruction of the

full framework, and provides an average Jaccard measure of 0.934.

5.5.4 Qualitative Evaluation on Real Data

We qualitatively evaluated the stack-wise registration on the brain and hip MRI datasets,
and the slice-wise registration on the cardiac MRI datasets. The same RBF flatness
parameter v = 1.5 was used for all brain and hip datasets, and it was set to 1 then
4 when processing the 4D cardiac MRIs in two steps. The hip dataset was segmented

using a combination of the edge-based model of [61] and the intensity-based model of

[7]-

The brain and hip datasets had only very small initial misalignments of less than 5 pixels
and a few degrees. The registration, segmentation, and interpolation results (Fig. 5.10
and top row of Fig. 5.11) were inspected visually, and we subjectively assessed that both

methods perform similarly well on these datasets.

In the bottom of Fig. 5.11, the difficult segmentation of the diagonal sequence in the hip
dataset, due to some fine surrounding tissues being of a similar intensity than the bone,
biased the reconstruction of the femur head where this sequence was predominant, i.e. in
the gaps of the other sequences. This resulted in the bumps seen in Fig. 5.11i. This
issue can be solved by selecting a more robust segmentation algorithm. When discarding

this sequence, the reconstruction from the remaining sequences was visually satisfactory
(Fig. 5.11d).

The range of initial misalignments of the temporal sequences of the cardiac MRIs was
more important, with shifts of 1 to 10 pixels. We found that registration by rotation

and by translation along the long-axis direction did not improve the quality of alignment
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(a) (b)

Figure 5.10: Registration, segmentation, and interpolation of brain ventricles
from T1 and T2 MRI viewed (a) from the top, and (b) from the side.

() (£) (&) m Q)

Figure 5.11: Registration, segmentation, and interpolation of a femur head
from T1, T2 and STIR MRI. Top row: modelling from one axial and two coronal
sequences. Bottom row: modelling from the same sequences plus a diagonal
sequence that is badly segmented, thus biasing the reconstruction in the gaps
of the other sequences. (a) to (c) and (e) to (h): central slices of Fig. 2.8 with
segmentation in red. (d) and (i): 3D reconstructions.

on these data. We suspect that this is due to the fact that they were all acquired at
end-expiration, which is a position where the heart undergoes negligible or no rotation
and shift along its long-axis. Therefore, the results we show have been obtained using
translation in the SA plane only. For datasets acquired at end-inhalation or during free

breathing, translation along the long-axis and rotation may be added as in Section 5.5.2.
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Fig. 5.12 presents some results, by both methods, of slice-wise registration on real cardiac
MRIs which had severe initial misalignments of 5 to 10 pixels. The SR+ISI method
performs less satisfactorily in such cases, and yields even poorer results than in Section
5.5.2 with the artificial heart datasets. We explain this by the higher complexity of
the data, whose background contained several objects, which can confuse the SR[33]
registration method. In addition, most of the datasets contained only a small number
of LA slices (3 by average) while the method proposed in [33] was designed for datasets
made up of two stacks of 6 SA and 8 LA slices, so less intersections between slices were
available to compute similarity measures. On the contrary, the proposed registration
method registers the datasets very well in all cases, and the complete framework recovers

plausible shapes of the cavity of the left ventricle of the heart.

(a) (b) (c) (d)

Figure 5.12: Registration, segmentation, and interpolation of the cavity of the
left ventricle of the heart from real 4D MRIs. Only one time-frame is displayed.
(a) and (c) SR+ISI, (b) and (d) IReSISD. The protrusions in shapes (a) and (c)
are due to the badly aligned SA and LA slices which provide conflicting infor-
mation to the subsequent integrated interpolation and segmentation of ISISD.

5.5.5 Timing

The considerations on the timing of ISISD given in Section 4.5.8 also apply to IReSISD,
since it uses the same segmentation and interpolation stages than ISISD. When register-
ing the datasets at the same time than segmenting them and interpolating, the IReSISD
framework was moderately slower than ISISD, due to the additional computations of the

extended velocities S™, normals N, and normalisation term in (5.15).

As in Section 4.5.8, timing comparisons against SR+ISI mainly highlight differences

in the registration times, since ISISD was used for the segmentation and interpolation
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stages of SR+ISI. In our implementation, IReSISD was always faster than SR+ISI by
an order of magnitude. However, this running time can not be fairly compared with
SR[33], since we used our own implementation of SR[33], which was performing using a
simple iterative gradient descent and was not optimised for speed. Note however that
IReSISD does not require an additional registration step like SR+ISI or other sequential
methods.

5.6 Conclusion

In this chapter, we extended the ISISD framework of Chapter 4 to a fully unified frame-
work for integrated registration, segmentation, and interpolation for sparse and mis-
aligned data. To this end, we introduced a new registration method based on the level
set method and which is adapted to sparse and non-overlapping data, and we integrated
it to the ISISD framework.

We have demonstrated the use of this new IReSISD framework to modelling from sparse
and misaligned medical tomographic data, and we compared against a state-of-the-art
semi-sequential method implemented with the sequential registration of Lotjonen et al.
[33], and the integrated segmentation and interpolation of ISISD. We particularly focused
on handling misalignements, even in the ill-constrained case of very sparse data having

only a few intersections.

Overall, TReSISD proved to be as flexible as ISISD in the variety of shapes, spatial
configurations, imaging modalities, and segmentation algorithms that it can handle.
The registration method of IReSISD was more robust to small number of intersections,
cluttered background, and local minima than the NMI based method of Lotjonen et al.
[33]. Its integration to the previous ISISD framework allowed processing simultaneously

misaligned data that were produced by different modalities.

The integration of all three stages of registration, segmentation, and interpolation was
more robust than sequential processing, due to the three stages benefiting from each
other. Note however that in such integration, registration and interpolation rely heavily
on segmentation results, and therefore segmentation has to be completely reliable. This
should be ensured by designing segmentation algorithms adapted to the data being
processed, as will be highlighted by our application of IReSISD to cardiac cine MRIs in
the next chapter.



Chapter

Modelling of the Heart from
Cardiac Cine MRI

In this chapter, we demonstrate the application of IReSISD to modelling the heart from
cine MRI. As explained in Section 2.1.1, the modelling of the heart from cine MRI is tra-
ditionally challenging in both the registration and interpolation aspects, due to relatively
large gaps and a difficult and ill-constrained registration. This application is therefore

well suited to evaluate the potential of the IReSISD framework in real situations.

Several heart chambers and the myocardium are modelled simultaneously, thanks to the
possibility to extend the framework to handle multiple regions. Indeed, multi-region seg-
mentation is a common feature of level set methods that was proposed e.g. in [53, 66].
The proposed level set framework naturally inherits from this feature, as will be demon-
strated later. We take advantage of the clear separation between the bright intensities of
the blood pools and the darker colours of the surrounding tissues in cardiac cine MRIs
to segment the two cavities of the LV and RV using the simple PC model described in
Section 4.5.1. The segmentation of the myocardium is more difficult due to the very
weak contrast of its external boundary, thus it often requires the use of prior knowledge.
Several methods have been proposed in the past to segment the myocardium using prior
knowledge, e.g. [35]. In this chapter, we will demonstrate the possibility of integrating

such prior knowledge with IReSISD in order to model both cavities and the myocardium.

As in Sections 4.5 and 5.5, our evaluations focus on the accuracy of the registration and

interpolation, and we compare qualitatively with the popular sequential approach imple-
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mented with the NMI based registration of Lotjonen et al. [33], the image interpolation
of Cordero-Grande et al. [14], and the same segmentation as in ISISD and IReSISD. Al-
though it would have been desirable to also compare against the fully integrated method
of Zambal et al. [64], which uses deformable models to reconstruct the heart, it was not
possible, as explained earlier in Section 3.1.2. Therefore, we only compared against the

traditional sequential approach.

We first demonstrate in Section 6.1 the possibility to use prior knowledge in IReSISD to
segment the myocardium. Then, in Section 6.2, we evaluate the quality of the modelling

of the heart cavities based on image data only.

6.1 Joint 3D Modelling of the LV and RV Cavities
and Myocardium Using Prior Data

In this experiment, we show that it is possible to integrate prior knowledge to the IRe-
SISD framework in order to constrain the difficult segmentation of the myocardium,
whose intensities are very similar to these of the background. In such an application,
the use of prior knowledge mainly aims to prevent the contour which segments the ex-
ternal boundary of the myocardium (epicardium) from leaking into the background. For
simplicity and clarity of presentation, we use a simple form of prior knowledge, i.e. a
constraint on the thickness of the myocardium. Note that more elaborate forms and uses
of prior knowledge were proposed in the past for the level set framework, e.g. by Zhang
et al. [67]. The design of an optimum prior model to constrain the active contour based
segmentation of cardiac MRI is still an open research subject, and the investigation of

such an optimum solution is not in the scope of this work.

Our method is similar to what was presented in [35] for edge based segmentation, but
adapted to the PC segmentation algorithm. An initial segmentation of the two LV
and RV cavities is computed in a first step, using two level sets which are updated
simultaneously and do not need to intersect and interact as a result of the natural
separation of the two cavities. Note that, when using the small object or hole preserving
approach described in Section 4.4.3, only the first segmentation step with a sharp RBF
can be used at that point. Indeed, the aim is to delineate the internal boundary of the

myocardium (endocardium), which is the border of the LV cavity.
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Then, the segmentation of the myocardium is added to the process, driven by both
a coupling term Scoupiing between the endocardium and the epicardium, and an image

derived term Sjyqge limited to the area of expected location of the epicardium:
S = VScoupling + (]— - V)Simage . (61)

v is a weighting coefficient and is set to 0.5 in our test. An example of the output of this

second step is displayed in Fig. 6.1.

The coupling and image based terms differ from those in [35], since they have been

adapted to the PC model. The coupling term is computed as:

(
-1 it < —d—-w,

Al d—w < ¢ < —d+w,

w

g and Spc>0, (6 2)
coupling — .
e SPC’ if—d—w<¢1<—d+w,

andSPCSO,

Spc if o1 > —d+w.

\

¢1 is the value of the level set function associated with the LV cavity contour (or en-
docardium) at the end of the initial segmentation stage, and therefore it represents the
(negative) distance to this contour. d and w are the nominal distance between the endo-
and epicardium, and the transition width respectively. In [35] they are derived from an
a priori model, but for simplicity, they are set to 6 and 4 in our test. Spc is the speed

yielded by the PC segmentation model. The image derived term is defined as:

exp (_@;5)2) Spc if ¢1 < —d and Spe > 0,

(6.3)

Sim(zge =
Spc otherwise .

During the second step, the two LV and RV cavities and the myocardium are segmented
concurrently by two level sets, using the multi-region level set scheme proposed by Vese
and Chan [53]. Note that other multi-region methods may be used, such as the scheme
proposed by Zhang and Matuszewski [66] which uses one level set per object and includes
a prior term for both contour exclusion and topology preservation that ensures that the
LV and RV cavities are surrounded by the outer contour of the heart and exclude each

other. For simplicity, in this experiment, we demonstrate the possibility to segment
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multiple regions using the simpler method of Vese and Chan [53] that is independent
of the prior knowledge. This scheme uses a number N of level sets simultaneously in
order to segment 2V piecewise constant or piecewise smooth regions. The regions are
defined as all the possible intersections of the areas bounded by the different level set
contours, and by construction they cannot overlap or create vacuums. Following this
idea, in our implementation two level sets are jointly used to segment the LV and RV
cavities (Figs. 6.1b and 6.1c respectively), which are defined as the two areas which are
inside one level set contour and outside of the other (blue and red areas in Fig. 6.1a).

The myocardium (Fig. 6.1d) is the area where both level set functions are positive (green

(a)

Figure 6.1: Modelling of multiple regions and using prior knowledge — recon-
struction of the two cavities of the heart and myocardium from a cine MRI. (a)
SA slice with the LV, RV, and myocardium segmentations coloured in blue, red,
and green respectively. 3D reconstructions of (b) the LV, (c¢) the RV, and (d)
the myocardium.

area in Fig. 6.1a).

’
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As in the experiment on cardiac MRIs of Section 4.5.6, IReSISD is used with the small
object or hole preserving approach in two steps, as described in Section 4.4.3, with ~ set

to 0.7 then 3 in order to delineate the papillary muscles.

Note that other, more elaborate prior knowledge may be used with IReSISD and would
certainly improve the results presented in Fig. 6.1d. In particular, they may include
models of the shape and dynamics of the myocardium. Their integration into IReSISD

can be done, as in this experiment, through the definition of a new contour speed Seoupiing-

6.2 4D Modelling of the LV and RV Cavities

This experiment demonstrates how IReSISD can be applied to the 4D modelling of the
LV and RV cavities from real cardiac cine MRIs. As in Section 4.5.7, the inherent ability
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of ISISD and IReSISD to process periodic data is exploited to interpret the cyclical

nature of cardiac motion.

Similarly to Section 6.1, the simple PC segmentation algorithm [7] is used in order to
separate the bright blood pools of the LV and RV cavities from the dark myocardium and
background, and two level sets jointly segment both cavities. Since the myocardium is
not segmented in this experiment, a low intensity is artificially assigned to its associated
area (where both level set functions are positive) in order to prevent it from segmenting

parts of the cavities.

Contrary to Sections 4.5.6 and 6.1, where the small object or hole preserving approach
described in Section 4.4.3 had to be used in order to capture the papillary muscles in
3D, we use here a simple scheme in 4D with a single value of 3 for the RBF flatness
parameter -, for all datasets. Indeed, in 4D the papillary muscles are no longer isolated
features since they are connected to the myocardium at some point in the cardiac cycle, as
illustrated, for example, in Fig. 17 of Appendix C. Therefore, this simple scheme provides
the required level of robustness to noise while being able to delineate the papillary

muscles.

The initialisation is provided manually by drawing on one image, chosen by the user, the
centre and radius of a sphere inside the cavity to segment. This sphere is defined by the
user in one time-frame only, but, in order to accelerate the convergence, it also serves as

an initialisation for all the other time points.

We perform a slice-wise registration on the cardiac MRIs, with all 25 time-frames being
used for computing the registration. The range of initial misalignments was visually
assessed to be shifts of 0 to 10 pixels. As in Section 5.5.4, we register by translation in

the SA plane only.

We compare qualitatively against the sequential approach implemented with the reg-
istration of SR[33] followed by the image interpolation of Cordero-Grande et al. [14]
and a 4D level set segmentation. Segmentation is implemented with ISISD in order to
benefit from the same robustness to noise as that in IReSISD and therefore to produce
comparable segmentations. The interpolation of the volume is performed in 3D for each
time-frame separately, since [14] can not perform interpolation across the time domain in
an inter-frame fashion. The segmentation stage is performed in 4D by ISISD on the full,
interpolated volumes produced by [14]. Therefore, the segmentation stage exploits the

periodicity of the data, but not the interpolation stage. The interpolated volumes are
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treated as 3D images, therefore the ¢;, and ¢, coefficients of the PC model in (4.19) are
computed for the full 3D volumes rather than for each slice separately as in IReSISD.
The RBF flatness coefficient v was tuned to obtain a similar robustness to noise and
segmentation quality as in IReSISD. Indeed, the same value for v on the sparse and the
interpolated data would not provide the same segmentation, since the higher density of
data points in the interpolated case results in an increased smoothing effect of the RBF
convolutions. A value of 2 for v was found to provide a similar segmentation to IReSISD,

and was used for all datasets.

We performed the comparisons on 14 of our cardiac MRI datasets which contain at
least one LA slice in order to allow registration. Two examples of segmentation by
both the sequential method and IReSISD are shown in Figs. 15 to 21 and 22 to 25 of
Appendix C, and Figs. 6.2 and 6.3 present the associated reconstructions. In the case
of the sequential method, only the segmentations of the original, non-interpolated slices
are shown, because of space constraints. The example dataset 1 is representative of
our datasets which were obtained from real patients, and it has a typical level of noise
and a standard spatial configuration of 11 SA slices (but only 10 contain the heart and
are displayed here) spaced at 10 mm (i.e. ~5 pixels) and 6 LA slices. It is also one
of our datasets that suffers from relatively high initial misalignments, with shifts of its
individual slices of about 2 to 10 pixels. Example dataset 2 is interesting because of its
particularly large gaps of ~10 pixels (20 mm) between its SA slices, which allow assessing
the robustness of interpolation. This dataset is made up of 6 SA slices (again, only 5

slices contain the heart and are displayed here), and 3 LA slices.

The reconstructions obtained by IReSISD contain parts of the atria and great vessels,
which are modelled from the LA slices. Note that the surface of the atria and great
vessels are less detailed when modelled from datasets having very few (2 or 3) LA slices,
such as the example dataset 2. In order to separate the ventricles from the atria in the
models, the valves between them would need to be detected. The automatic detection
and tracking of the valves are not in the scope of this work and could be the object of
a future work, so we present the full models containing both the ventricles and parts of
the atria. Note also that the SA slices do not span the atria and stop at the approximate
position of the valve between the LV and left atrium. Therefore, the sequential method,
which only uses these SA slices for the interpolation and segmentation stages, only

modelled the ventricles.

When subjectively compared, we observe that the segmentations of the 2D images of the

cardiac datasets are similarly accurate for both methods. Due to the use of the simple
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PC segmentation model, the fuzziness of the boundaries of the RV is ignored. As a result,
the segmentation of the RV is often incomplete or includes parts of the background. In
our worse segmentation case, the RV was not found at the correct place, and this led to
the failure of the registration stage. This case had to be handled by modelling the LV
alone in a first step, then segmenting and interpolating the RV using ISISD in a second
step, without updating the registration. A more elaborate segmentation algorithm would
be needed to model the RV cavity more accurately. To this end, investigating dynamic
texture based algorithms and the use of prior knowledge could be considered in the

future.

The results of the registration stage is found to be more satisfactory by the IReSISD
framework than by the sequential approach. The NMI based registration method SR[33]
performs less accurately than the registration method of IReSISD on all 14 datasets,
and yields poorer results than in the experiments on artificial heart datasets of Section
5.5.2, as was already discussed in Section 5.5.4. When the registration is particularly
bad, it offers a poor support to the subsequent interpolation and segmentation stages.
In our implementation of the sequential approach with the interpolation of Cordero-
Grande et al. [14] which uses SA slices only, this resulted in “twisted” shapes, e.g. as
highlighted by the blue circle in Fig. 6.2. If both SA and LA slices were to be used, then
the bad registration would also lead to the creation of protrusions, due to the conflicting
information that the misaligned SA and LA slices would provide to the interpolation and
segmentation stages, as was illustrated in Figs. 5.12a,c where the registration of Lotjonen

et al. [33] was followed by the integrated interpolation and segmentation of ISISD.

The interpolation is also more satisfactory with the IReSISD framework. Notably, the
apex of the LV is better segmented and interpolated by the proposed method than by [14]
followed by segmentation, thanks to the method taking into account the global shape of
the modelled object and to the use of the LA slices. In the case of the example dataset
2, TReSISD also produced smoother shapes, while [14] interpolated straight sections in
the large gaps between the SA slices.

6.3 Conclusion

In this chapter, we have applied the IReSISD framework to modelling cavities of the
heart and the myocardium from cardiac cine MRI. First, we demonstrated the use of

prior knowledge to constrain a difficult segmentation. Then, we assessed the quality of
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registration and interpolation qualitatively, and compared against a popular state-of-

the-art sequential method.

Overall, IReSISD provided a more robust registration and interpolation than the NMI
based method of [33] and the image interpolation of [14], thus confirming the results of
our evaluations in Sections 4.5 and 5.5. The inherent ability of the framework to handle
periodic data was also exploited and allowed making sense of the cyclical nature of the

cardiac cycle.

The quality of segmentation was found to be a limiting factor in this application, that
may hinder the registration and interpolation stages in the worse cases. Therefore, more
robust segmentation algorithms should be investigated, including the use of texture as

was done e.g. in [23] for tagged MRIs, as well as prior knowledge based methods.
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Figure 6.2: 4D modelling of the LV and RV cavities — dataset 1, all 25 time-
frames. The blue circle highlights the “twisted” shape of the reconstructed LV

cavity, due to the poor alignment of the SA slices yielded by the SR[33] registra-
tion of the sequential method.
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Chapter

Conclusion

The aim of this work was to develop a method for modelling 3D and 4D objects from
sparse and misaligned data. Such a method needs to register, segment, and interpolate
the data volume in order to recover a closed shape of the object. Several issues were

addressed, notably:

e the possibly large gaps and missing information — resulting from a compro-
mise being frequently sought by radiologists between detailed examinations and

fast acquisitions.

e the diverse appearance of medical images — either due to physical limitations
of the scanner, which may produce images having different gains and contrasts
even within the same dataset, or due to different imaging modalities being used
concurrently in the same examination. This makes the handling of the gaps in the
data more difficult.

e the great variety of possible spatial configurations of the data — even
though we focused on medical tomographic data, many medical acquisition proto-
cols exist, which produce sets of slices that have arbitrary positions and orienta-

tions.

e the wide variety of shapes being modelled — since this work aimed at being
general enough to be employed for any medical application, e.g. imaging any organ
or tumour. In addition, such a high flexibility would allow imaging of objects
that have significant shape variations, such as organs of patients suffering from

deforming pathologies, or evolving tumours.
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e the difficulty of registration — due to the limited intersections available in sparse

datasets.

e the interdependency of registration, segmentation, and interpolation —

which should be taken into account and exploited.

Interpolation of the object’s shape allowed handling the gaps in the data. The issue of
different gains and contrasts in the same dataset has been addressed by interpolating
the object’s shape through the segmenting contour or surface, rather than the image
intensity, as is done traditionally in medical image analysis. Interpolation of the object’s
shape, regardless of the spatial configuration of the data, was provided by a new level
set scheme which we introduced in Chapter 4. In this new scheme, the level set function
was interpolated using RBFs. In addition to being able to handle different gains and
contrasts, and sparse data of arbitrary spatial configurations, this new level set scheme
was numerically stable and more robust to noise than a classical level set. It benefited
from the flexibility of level set methods that enables it to model a great variety of shapes
and to segment the data using any segmentation algorithm, the choice of which depends
on the data.

We also presented a new registration method in Chapter 5, which was adapted to sparse
data, and we integrated it into the above level set framework. This registration method
was based on the mutual convergence of the segmenting contour and the images towards
each other. In addition to being able to handle any spatial configuration and imaging
modality, this registration method was robust to having only a small number of intersec-
tions between the different sequences to align, thanks to the use of segmentation results.
Further, its robustness to local minima was increased by taking into account global
information on the geometry of both the segmenting contour and the object. Its integra-
tion, together with segmentation and registration, into our level set framework allowed
exploiting the interdependency of these three stages. The integrated framework could
process sparse data made up of different sequences acquired in turn and independently,

and which may suffer from misalignments.

Our fully integrated framework was evaluated on 3D and 4D medical tomographic im-
ages in Sections 4.5 and 5.5, using artificial data, MRI, and CT scans. We demonstrated
the flexibility of our framework by modelling shapes of various topologies and complexi-
ties, using different segmentation algorithms that can exploit both image data and prior
knowledge. Registration was assessed and compared against a popular NMI-based reg-

istration method [33]. Although, for relatively dense datasets and low misalignments,
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the method in [33] was slightly more accurate (but with both methods achieving sub-
pixel and sub-degree accuracy), our proposed registration method proved to be more
robust to just a few intersections between the slices which make up a dataset, and to
local minima in case of significant misalignments. Interpolation was compared against a
state-of-the-art image interpolation method [14] and obtained a more global interpola-
tion of the shape of the object, especially in large gaps and where the object disappears
between two slices. It could also handle all spatial configurations and different modali-
ties simultaneously, while the image interpolation method of [14] was limited to parallel
and equally spaced images having the same gain and contrast. However, not all spatial
configurations obtained the same quality of interpolation, and the accuracy was reduced
in cases where the planes of the image slices were oriented roughly tangentially to the
surface of the object. Note that this is rarely the case in medical imaging, where the
orientation of the slices are adapted to the morphology of the patient by the radiolo-
gist. Finally, the full integration of all three processes into the same level set framework

increased their respective robustness and accuracy, and produced very detailed shapes.

Note however that this full integration also implies that the success of all three processes
depends strongly on the robustness of the chosen segmentation algorithm, as was illus-
trated by our application of IReSISD to the modelling of the heart from cine MRI in
Chapter 6. Since the proposed framework is general enough to employ any segmentation
method, it is possible to choose the most well adapted algorithm for a given application
and type of data. Segmentation and modelling may also be improved continuously by
integrating the latest segmentation algorithms into the framework as and when they are

developed.

7.1 Contributions

Our contributions are summarised below.

e We introduced the new concept of integrating segmentation and interpolation by

interpolating a level set segmenting surface.

e We presented a new level set scheme based on the interpolation of its implicit
function by RBF's.

e We proposed a novel level set based registration method for sparse and non-

overlapping data.
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e We integrated the three processes of registration, segmentation, and interpolation
in a level set framework. To the best of our knowledge, this is the first time that

all three processes are integrated in a level set framework.

e We introduced a general modelling framework that can handle arbitrary imaging

modality, spatial configuration of the data, and shape of modelled object.

7.2 Future Work

The careful choice of a segmentation algorithm that is adapted to the data, i.e. the
modality and imaged organ, is highly recommended for any practical usage of IReSISD.
The design of robust segmentation algorithms that are suited to specific data should be
the subject of future work. Since IReSISD can use any segmentation algorithm, extra
robustness may be obtained by combining several segmentation criteria, such as edges,
intensity, and texture, in order to exploit all available information. The use of prior

knowledge may also be investigated to produce more robust segmentations.

A possible extension of this work is the application of IReSISD to different types of data,
such as 3D point clouds. Indeed, as highlighted before, IReSISD is a general framework
and was designed to be used on data having any spatial configuration, through the choice
of an adapted segmentation algorithm for the computation of the contour speed S. In
Appendix A, we propose a segmentation algorithm for S in the case of 3D point clouds
with line-of-sight information, and we present some preliminary results of the application
of IReSISD to the modelling of objects from RGB-D data produced by the Kinect sensor.
This application remains to be evaluated and compared against state-of-the-art methods.
Other segmentation algorithms, that could be more robust and accurate, may also be

investigated.
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Appendix A

Application to Object Modelling from
RGB-D Data

This thesis focused on the application of the proposed IReSISD framework to modelling
from medical tomographic data. In this appendix, we demonstrate the possibility to
also use IReSISD on RGB-D data. This is possible since, as highlighted at the end of
Section 4.3.1, Algorithm 4.2 does not make any assumption on the type of data, and
3D point clouds may be processed by choosing an appropriate segmentation algorithm
for the computation of S. We propose a segmentation algorithm adapted to 3D point
clouds with line-of-sight information, and we show some early results of modelling from
both artificial and Kinect RGB-D data.

Proposed Method

This section presents how we propose to apply IReSISD to object modelling from multiple
sparse and misaligned 3D point clouds. Our experiments were carried out from a small
number of RGB-D images, acquired to cover as many different sides of the object as
possible, with some overlapping between them. Typically, we used one image viewed
from each of the 8 cardinal directions, and occasionally one additional image viewed
from the top. The data were processed off-line.

The first step is to define a rough initialisation for the registration. This is currently
done by asking the user to select the type of orientation of the image (see Fig. 1 for
the different orientation types available) and a small ROI inside the object to segment,
which is drawn on the RGB image. This ROI is used to initialise both the registration,
by aligning the centres of gravity of the 3D points inside the ROIs, and the segmentation
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model, using the RGB values of these points. So, this first step ensures that the 3D
points belonging to the object are placed roughly in the same area of the volume and
with relatively coherent orientations of the depth maps. In addition, the colours of the
ROI points in the RGB images initialise a colour-based segmentation model which will
be used to classify the 3D points between object and background.

Back Top

¢%e B
>

Lait Right

& 8 o
) B @

= 0 n 0 ._‘.\\ q
vy @ v &
(a) (b) (c)

Figure 1: Available options for a rough initialisation of the orientation of the 3D
point clouds by the user. (a) orientation of the object, (b) horizontal orientation
of the camera, (c) vertical orientation of the camera.

Secondly, a 3D level set surface is initialised as a small sphere at the centre of the ROIs.
It will be evolved by the IReSISD framework at the same time as the point clouds, using
a segmentation algorithm for the computation of S that will be described next. This
evolution is done in a multi-resolution manner in order to speed up the computation and
to reduce the number of possible local minima for the registration. The initialisation of
each resolution is provided by the result of the previous coarser resolution.

During our tests, we found that registration using only the global variant of our regis-
tration method was more accurate for registering point clouds than the combination of
global and local variants presented in Section 5.3.5. Therefore, all the results presented
in this Appendix are obtained using the global variant of our registration method only.

Segmentation Algorithm

Our proposed segmentation algorithm for 3D point clouds with line-of-sight information
is adapted from the method of Whitaker [58] who uses a level set method to model
objects from dense and aligned point clouds with line-of-sight information. A similar
approach can be used for sparse and misaligned data by integrating an extended version
of this segmentation algorithm into our IReSISD framework.

Contrary to the scenario of [58] where all data points are assumed to belong to the
modelled object, we propose to make use of RGB and depth information to classify
them between the object to segment and the background. In our implementation, we



Appendix A 146

chose two simple classification criteria: the first one is based on colour only and, similarly
to [7] for grey-level images, it assumes that the object is a region of a constant colour
in the RGB image. The second scheme is based on depth only and it assumes that the
object is disjoint from its surrounding points — this is the case, for example, of a bust
of a person if this person stands in the middle of an open space and the field-of-view of
the camera does not include the lower part of the body which connects to the floor (see
example in the right column of Fig. 5). Other, more elaborate and robust segmentation
criteria may be used as well.

If a data point is classified as a background point, then all level set surface points which
are on its associated line-of-sight between the camera and the data point are given a
negative speed S = —1. Indeed, the object can not be in this empty area and, since the
contour is initialised around or inside of the object, it should therefore shrink towards
it. All level set surface points located on the line-of-sight behind the data point are also
given a negative speed, but it is weighted by a confidence term which decreases away
from the level set surface. This reflects the increasing probability of the background
surface occluding the object. Thus, in this area, we use the speeds S = —€, where

¢ = min (% 1) (1)

expresses our confidence in the choice of speed, with 9 the unsigned distance to the data
point in voxels. This confidence function is equal to 1 between 0 and 2 voxels, then it
decreases to reach 0 at infinity.

If a data point is recognised as an object point, then the level set surface points located
on its line-of-sight are given speeds S according to a modified version of [58]. This
modification of [58] aims at obtaining a better registration with IReSISD, and it makes
use of the robustness to noise of IReSISD. For simplicity, we consider a parametric
coordinate 7 along a line-of-sight, with 7 = —1 at the position of the camera and 7 = 0
at the data point. Lets 7, be the first intersection of the level set surface with the line-
of-sight, i.e. the smaller 7 at which the level set function ¢ becomes positive. If no level
set surface intersects a line-of-sight, we set its corresponding 7, to infinity.

For 7 < 0, i.e. between the camera and the object, we want to push the level set surface

towards the data point. As in [58], we must choose the speed carefully in order to take
into account possible foldings of the surface. When 7 > 7, we set the speed S to

Sy X (ﬁ -N (7‘)), with

S, = min (0 (27) , 1) . 2)

ﬁ is the unit vector from the camera to the data point, N is the normal vector of the

level set surface, and - is the scalar product. Thus, C'P - N (1) is the projection of the
level set normal on the line-of-sight and is in effect the cosine of the angle between these
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two unit vectors. If <ﬁ -N (T)> < 0, then the level set surface faces the camera, and

S < 0 and shrinks the level set surface towards the data point. If (C‘}% ‘N (7')) > 0, then

the level set surface faces away from the camera at that point 7. In such a case, [58] sets
the data term of the speed to 0. However, we know that the point is between the camera
and the object, so instead we push it with a positive speed towards the data point. Note
that this speed will change once the level set surface point reaches the data point and
the corresponding 7 becomes positive. When 7 < 75, we use S = —5,, which is negative.

Although the value S, x (ﬁ -N (7’)) could also produce a correct segmentation, the use

of the global variant of our registration method requires S to always be negative in the
area where 7 < 7;,. Otherwise, after the level set contour converges to the boundaries

of the object, some positive speeds due to (@ -N (7')) being positive close to surface
foldings could create an artificial {2, area that could bias the registration.

For 7 > 0, i.e. beyond the data point, our confidence in the choice of the speed decreases
away from the data point because we do not know how thick is the object and what is
beyond this part of the surface of the object. Therefore, we use the confidence term &€
defined in (1). Before the first level set surface point, i.e. where 7 < 7,5, we need to push

the level set iso-contours towards the data point. Thus, S is set to —S; X (ﬁ -N (7'))

Otherwise, we give a positive speed to the contour. Where 7 = 7,, i.e. on the first
intersection of the level set surface with the line-of-sight, S is set to S, and where
T > 75, S is equal to S x € inside the level set surface where ¢ > 0, and to 0 where
¢ < 0. Thus, contrary to [58], S is positive inside the level set surface even far away from
the data point (although its value is quite low due to the confidence term) and when
the level set function faces away from the camera. These positive speeds inside the level
set surface avoid the creation of an artificial (). area and, at the same time, provide a
balloon force which tends to inflate the object and prevents the different point clouds to
shrink to a central position during registration. Note that these positive speeds are weak
enough to be overran by the negative speeds that point clouds with a different camera
orientation may produce, so they should not hinder the registration.

Table 1 summarises the computation of S in our proposed segmentation algorithm.
The curvature term and the Gaussian model of noise in the depth measurements in [58]
are not necessary with IReSISD since its RBF interpolated level set scheme can handle

this noise and produces smooth surfaces, as discussed in Section 4.4.2. This will be
demonstrated in the next section.

Preliminary Results

We apply IReSISD to both artificial and real RGB-D data. The artificial datasets are
produced by rendering artificial scenes in RGB-D using Blender. They will be used to
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Table 1: Proposed segmentation algorithm for the computation of the contour
speed S on 3D point clouds

Classification ] .
of data point Sign of 7 | Value of 7 | Sign of ¢ | Contour speed 5
Negative 1
Back
ackground Positive ¢
< _
Negative =T S
> T, S, <677-N(7')>
Object T < Tis -8, X (ﬁ N (T)>
Positive T = Ts =0 Sh
- Negative 0
' [ Positive Sy X €

evaluate the accuracy and robustness of the modelling of IReSISD, and to establish its
limits of performance in the case of perfectly dense and aligned data. Our real datasets
are acquired using a Kinect sensor.

Artificial Data

The models obtained by ISISD from our ideally dense and aligned artificial data are
used as ground-truth for our on-going evaluations of the registration, segmentation, and
interpolation of IReSISD. The ground-truth reconstructions are displayed in Fig. 2. Note
that the flexible level set method used in ISISD could segment all the different topologies,
and the smoothing property of our RBF interpolated level set scheme did not prevent it
from capturing fine details and sharp corners.

Fig. 3 presents preliminary results on assessing the robustness of ISISD to noise in the
depth measurements. They were obtained by adding an artificial Gaussian noise to the
depth values of our artificial data. Overall, we find that our RBF interpolated level set
scheme is as effective at handling noise in depth measurements as it was for noise in
the images of tomographic datasets. In addition, similarly to tomographic data, we note
that different levels of RBF flatness produce various degrees of robustness to noise.

A registration result is also presented in Fig. 4, where the different point clouds that make
up the dataset were artificially translated and rotated by random amounts (Fig. 4a). In
Fig. 4b, IReSISD achieved a very accurate registration of the point clouds and modelled
the object with a similar precision to the ground-truth model of Fig. 2.

More tests and comparisons against state-of-the-art methods will be performed in the
future in order to better evaluate all three stages of registration, segmentation, and
interpolation of IReSISD on 3D point clouds.
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Figure 2: Ground-truth modelling from dense and aligned artificial point clouds.
First two rows: RGB and depth views of the artificial objects. Third row: 3D
point clouds. Bottom row: 3D models obtained by ISISD.

Kinect Data

We also present some preliminary results on real 3D point clouds produced with the
Kinect sensor. In Fig. 5, a small plush toy of approximately 7x10x15 c¢m is modelled
from 13 Kinect RGB-D images having various view points. It is segmented based on its
blue colour. The bust of a person is also modelled from 14 Kinect RGB-D images, using
depth information for the segmentation. The initial registration estimates of the point
clouds are displayed in the third row of Fig. 5. The final registrations, in the fourth row
of Fig. 5, are visually satisfactory. The two resulting models, in the last row of Fig. 5,
are also reasonably accurate and detailed, in spite of the noise and holes in the depth
measurements (see second row of Fig. 5).
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Figure 3: Modelling from noisy artificial point clouds. Top row: noisy point
clouds. Model by ISISD using: middle row: a sharp RBF, and bottom row: a
flat RBF.

(a) (b)

Figure 4: Registration and modelling from misaligned artificial 3D point clouds.
(a) initial misaligned point clouds, and (b) final re-aligned point clouds and
superimposed object’s model.
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Depth view RGB view

Initial 3D points

Registered 3D points

Model

Figure 5: Modelling from real Kinect RGB-D data. Left: blue plush toy, right:
human bust.
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Application to Image Inpainting and Video
Restoration

In this appendix, we propose a new application of the ISISD framework to image inpaint-
ing and video restoration. We will see that this problem is equivalent to filling holes in
a surface. This hole filling stage can be achieved by the interpolation property of the
ISISD framework.

Proposed Method

A grey-level image can be represented as a closed surface in a 3D space whose dimensions
are the two spatial dimensions of the image plus a grey-level dimension!. Using such a
representation, image inpainting and video restoration are effectively hole filling in this
image derived surface. Note that, in this case, segmentation is known beforehand and is
given by the location of the surface in the grey-level dimension where data is available,
1.e. where the image does not require inpainting. Thus, the interpolation stage of ISISD
may be used alone to fill holes in the surface.

Incomplete surfaces may be closed using ISISD by first initialising the level set contour
on the surface where data is available and setting the level set function to 0 elsewhere.
Then, Algorithm 4.2 may be applied until convergence, with .S set to the signed distance
to the surface where this information is available.

Attention should be given to preventing the surface from folding. This is necessary to

IThe different channels of a colour image may be processed separately.
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ensure that the surface crosses the “grey-level-axis” once per pixel position only. In our
experiments, we found that computing S on the border of the gaps, or even everywhere
in the 3D space, rather than only on the contour, ensured this condition was respected.
This means that we do not use . in (4.7) and therefore the RBF is required to be sharp
enough to prevent the background from having an overwhelming effect. This is fine since
only sharp RBF's were found to produce clear object boundaries.

Results

Examples of image inpainting are provided in Fig. 6 and are compared against the
Random Walks based Defect Removal (RWDR) method of Wang and Mirmehdi [57].
For untextured images or small holes, the proposed method better reconstructed edges
than the RWDR method [57]. However, for large holes, e.g. in the bottom row of Fig. 6,
only the slowly varying components of textured images are reconstructed while higher
frequency texture components are missing. This may be addressed in a future work,
possibly by also ”diffusing“ the higher frequency components of the hole border areas.

Similarly, videos may be restored in 4D, thus taking into account the neighbouring
frames, as in Fig. 7. For videos with slowly varying scene, the proposed method produced
clearer edges than RWDR when restoring large defects. However, for videos showing fast
moving scenes such as the background in the bus sequence (bottom row of Fig. 7), the
very sharp RBF used here prevented the method from binding correctly narrow objects
from one frame to the other. This prevented the lamp-posts in the bottom row of Fig. 7
from being properly reconstructed. In future work, this problem may be addressed using,
for example, registration.
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(a) (b) ()

Figure 6: Application of ISISD to image inpainting. (a) original image, in-
painted image by (b) RWDR [57], and (c) ISISD. The blue circles highlight some
examples of edges being better preserved by ISISD than by RWDR [57].
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Figure 7: Application of ISISD to video restoration. (a) degraded frame, re-
stored frame by (b) RWDR [57], and (c) ISISD.
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Examples of Raw and Segmented Cardiac
Cine MRI Datasets

This appendix presents examples of datasets and segmentations of cardiac cine MRI.
Figs. 8 to 14 show the images of a typical dataset that is made of a stack of SA images
and a few LA images, all having 25 time-frames. This type of dataset is presented with
more details in Section 2.2.2. Figs. 15 to 21 and Figs. 22 to 25 present two datasets,
zoomed around the heart, and with the segmentations produced by the sequential method
and [ReSISD superimposed in colour. See Section 6.2 for a description and a discussion
of these segmentation results.
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Time

Figure 8: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices — time-frames 1 to 8 (vertical axis) of slices 1 (apex) to 8 of the SA
stack (horizontal axis).
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SA 9 SA 10 SA 11 SA 12 LA 1 LA 2 LA 3
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Figure 9: Example of cardiac cine MRI made up of a stack of SA slices plus 3
LA slices (continued) — time-frames 1 to 8 (vertical axis) of slices 9 to 12 of the
SA stack and of the LA slices (horizontal axis).
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Time

Figure 10: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices (continued) — time-frames 9 to 16 (vertical axis) of slices 1 (apex) to
8 of the SA stack (horizontal axis).
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Figure 11: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices (continued) — time-frames 9 to 16 (vertical axis) of slices 9 to 12 of
the SA stack and of the LA slices (horizontal axis).
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Time

Figure 12: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices (continued) — time-frames 17 to 24 (vertical axis) of slices 1 (apex)
to 8 of the SA stack (horizontal axis).
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SA 9 SA 10 SA 11 SA 12 LA 1 LA 2 LA 3
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Figure 13: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices (continued) — time-frames 17 to 24 (vertical axis) of slices 9 to 12 of
the SA stack and of the LA slices (horizontal axis).



Appendix C 163

SA 9 SA 10 SA 11 SA 12 LA 1 LA 2 LA 3

Figure 14: Example of cardiac cine MRI made up of a stack of SA slices plus
3 LA slices (continued) — time-frame 25 of the SA stack and the LA slices.
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Sequential method IReSISD

Figure 15: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
SA slices 1 and 2. Blue: LV cavity segmentation, red: RV cavity segmentation.

SA slice 1

SA slice 2
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Sequential method [ReSISD

SA slice 3

SA slice 4

Figure 16: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
SA slices 3 and 4. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Sequential method [ReSISD
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Figure 17: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
SA slices 5 and 6. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Sequential method
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Figure 18: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
SA slices 7 and 8. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Sequential method [ReSISD
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Figure 19: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
SA slices 9 and 10. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Figure 20: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames
of LA slices 1 to 4. Blue: LV cavity segmentation, red: RV cavity segmentation.
Only the results of IReSISD are shown, because LA slices are not used by the
interpolation stage [14] of the sequential method.
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Figure 21: Segmentation of cardiac cine MRI — dataset 1, all 25 time-frames of
LA slices 5 and 6. Blue: LV cavity segmentation, red: RV cavity segmentation.
Only the results of IReSISD are shown, because LA slices are not used by the
interpolation stage [14] of the sequential method.
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Sequential method IReSISD
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Figure 22: Segmentation of cardiac cine MRI — dataset 2, all 25 time-frames of
SA slices 1 and 2. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Sequential method [ReSISD
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Figure 23: Segmentation of cardiac cine MRI — dataset 2, all 25 time-frames of
SA slices 3 and 4. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Sequential method [ReSISD
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Figure 24: Segmentation of cardiac cine MRI — dataset 2, all 25 time-frames of
SA slice 5. Blue: LV cavity segmentation, red: RV cavity segmentation.
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Figure 25: Segmentation of cardiac cine MRI — dataset 2, all 25 time-frames
of LA slices 1 to 3. Blue: LV cavity segmentation, red: RV cavity segmentation.
Only the results of IReSISD are shown, because LA slices are not used by the
interpolation stage [14] of the sequential method.
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